Adam Ivey
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adam Ivey.
The New England Journal of Medicine | 2016
Adam Ivey; Robert Kerrin Hills; Michael A. Simpson; Jelena V. Jovanovic; Amanda F. Gilkes; Angela Grech; Yashma Patel; Neesa Bhudia; Hassan Farah; Joanne Mason; Kerry Wall; Susanna Akiki; Michael Griffiths; Ellen Solomon; Frank McCaughan; David C. Linch; Rosemary E. Gale; Paresh Vyas; Sylvie Freeman; Nigel H. Russell; Alan Kenneth Burnett; David Grimwade
BACKGROUND Despite the molecular heterogeneity of standard-risk acute myeloid leukemia (AML), treatment decisions are based on a limited number of molecular genetic markers and morphology-based assessment of remission. Sensitive detection of a leukemia-specific marker (e.g., a mutation in the gene encoding nucleophosmin [NPM1]) could improve prognostication by identifying submicroscopic disease during remission. METHODS We used a reverse-transcriptase quantitative polymerase-chain-reaction assay to detect minimal residual disease in 2569 samples obtained from 346 patients with NPM1-mutated AML who had undergone intensive treatment in the National Cancer Research Institute AML17 trial. We used a custom 51-gene panel to perform targeted sequencing of 223 samples obtained at the time of diagnosis and 49 samples obtained at the time of relapse. Mutations associated with preleukemic clones were tracked by means of digital polymerase chain reaction. RESULTS Molecular profiling highlighted the complexity of NPM1-mutated AML, with segregation of patients into more than 150 subgroups, thus precluding reliable outcome prediction. The determination of minimal-residual-disease status was more informative. Persistence of NPM1-mutated transcripts in blood was present in 15% of the patients after the second chemotherapy cycle and was associated with a greater risk of relapse after 3 years of follow-up than was an absence of such transcripts (82% vs. 30%; hazard ratio, 4.80; 95% confidence interval [CI], 2.95 to 7.80; P<0.001) and a lower rate of survival (24% vs. 75%; hazard ratio for death, 4.38; 95% CI, 2.57 to 7.47; P<0.001). The presence of minimal residual disease was the only independent prognostic factor for death in multivariate analysis (hazard ratio, 4.84; 95% CI, 2.57 to 9.15; P<0.001). These results were validated in an independent cohort. On sequential monitoring of minimal residual disease, relapse was reliably predicted by a rising level of NPM1-mutated transcripts. Although mutations associated with preleukemic clones remained detectable during ongoing remission after chemotherapy, NPM1 mutations were detected in 69 of 70 patients at the time of relapse and provided a better marker of disease status. CONCLUSIONS The presence of minimal residual disease, as determined by quantitation of NPM1-mutated transcripts, provided powerful prognostic information independent of other risk factors. (Funded by Bloodwise and the National Institute for Health Research; Current Controlled Trials number, ISRCTN55675535.).
Blood | 2016
David Grimwade; Adam Ivey; Brian J. P. Huntly
Recent major advances in understanding the molecular basis of acute myeloid leukemia (AML) provide a double-edged sword. Although defining the topology and key features of the molecular landscape are fundamental to development of novel treatment approaches and provide opportunities for greater individualization of therapy, confirmation of the genetic complexity presents a huge challenge to successful translation into routine clinical practice. It is now clear that many genes are recurrently mutated in AML; moreover, individual leukemias harbor multiple mutations and are potentially composed of subclones with differing mutational composition, rendering each patients AML genetically unique. In order to make sense of the overwhelming mutational data and capitalize on this clinically, it is important to identify (1) critical AML-defining molecular abnormalities that distinguish biological disease entities; (2) mutations, typically arising in subclones, that may influence prognosis but are unlikely to be ideal therapeutic targets; (3) mutations associated with preleukemic clones; and (4) mutations that have been robustly shown to confer independent prognostic information or are therapeutically relevant. The reward of identifying AML-defining molecular lesions present in all leukemic populations (including subclones) has been exemplified by acute promyelocytic leukemia, where successful targeting of the underlying PML-RARα oncoprotein has eliminated the need for chemotherapy for disease cure. Despite the molecular heterogeneity and recognizing that treatment options for other forms of AML are limited, this review will consider the scope for using novel molecular information to improve diagnosis, identify subsets of patients eligible for targeted therapies, refine outcome prediction, and track treatment response.
Leukemia | 2013
Jelena V. Jovanovic; Adam Ivey; Alessandro M. Vannucchi; Eric Lippert; E Oppliger Leibundgut; B. Cassinat; N Pallisgaard; N. Maroc; Sylvie Hermouet; G Nickless; Paola Guglielmelli; B.A. van der Reijden; Joop H. Jansen; T Alpermann; S Schnittger; Anthony J. Bench; K Tobal; Bridget S. Wilkins; Kirsty Cuthill; Donal McLornan; K. Yeoman; Susanna Akiki; J Bryon; Sally Jeffries; Amy V. Jones; M.J. Percy; S. Schwemmers; A. Gruender; Todd W. Kelley; S Reading
Reliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21 500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6–85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant.
British Journal of Haematology | 2014
Bj Uttenthal; Irma Martinez-Davila; Adam Ivey; Charles Craddock; Frederick Chen; Andras Virchis; Panagiotis D. Kottaridis; David Grimwade; Asim Khwaja; Hans J. Stauss; Emma Morris
Wilms’ Tumour 1 (WT1) is a zinc finger transcription factor that is over‐expressed in acute myeloid leukaemia (AML). Its restricted expression in normal tissues makes it a promising target for novel immunotherapies aiming to accentuate the cytotoxic T lymphocyte (CTL) response against AML. Here we report a phase I/II clinical trial of subcutaneous peptide vaccination with two separate HLA‐A2‐binding peptide epitopes derived from WT1, together with a pan‐DR binding peptide epitope (PADRE), in Montanide adjuvant. Eight HLA‐A2‐positive patients with poor risk AML received five vaccination cycles at 3‐weekly intervals. The three cohorts received 0·3, 0·6 and 1 mg of each peptide, respectively. In six patients, WT1‐specific CTL responses were detected using enzyme‐linked immunosorbent spot assays and pWT126/HLA‐A*0201 tetramer staining, after ex vivo stimulation with the relevant WT1 peptides. However, re‐stimulation of these WT1‐specific T cells failed to elicit secondary expansion in all four patients tested, suggesting that the WT1‐specific CD8+ T cells generated following vaccination may be functionally impaired. No correlation was observed between peptide dose, cellular immune response, reduction in WT1 mRNA expression and clinical response. Larger studies are indicated to confirm these findings.
Blood | 2015
Andrea Kühnl; Peter J. M. Valk; Mathijs A. Sanders; Adam Ivey; Robert Kerrin Hills; Ken I. Mills; Rosemary E. Gale; Martin Kaiser; Richard Dillon; Melanie Joannides; Amanda F. Gilkes; Torsten Haferlach; Susanne Schnittger; Estelle Duprez; David C. Linch; Ruud Delwel; Bob Löwenberg; Claudia D. Baldus; Ellen Solomon; Alan Kenneth Burnett; David Grimwade
The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and co-downregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome.
Journal of Experimental Medicine | 2016
Lynn Quek; Georg W. Otto; Catherine Garnett; Ludovic Lhermitte; Dimitris Karamitros; Bilyana Stoilova; I-Jun Lau; Jessica Doondeea; Batchimeg Usukhbayar; Alison Kennedy; M Metzner; Nicolas Goardon; Adam Ivey; Christopher Allen; Rosemary E. Gale; B Davies; Alexander Sternberg; Sally Killick; Hannah Hunter; Paul Cahalin; Andrew Price; A J Carr; Mike Griffiths; Paul Virgo; Stephen Mackinnon; David Grimwade; Sylvie Freeman; Nigel H. Russell; Charles Craddock; Adam Mead
Quek and colleagues identify human leukemic stem cells (LSCs) present in CD34− AML. In-depth characterization of the functional and clonal aspects of CD34− LSCs indicates that most are similar to myeloid precursors.
Genes, Chromosomes and Cancer | 2013
Susanna Akiki; Sara Dyer; David Grimwade; Adam Ivey; Nervana Abou-Zeid; Julian Borrow; Sally Jeffries; Judith Caddick; Hayley Newell; Suriya Begum; Kiran Tawana; Joanne Mason; Mark Velangi; Michael Griffiths
The cytogenetically cryptic t(5;11)(q35;p15) leading to the NUP98‐NSD1 fusion is a rare but recurrent gene rearrangement recently reported to identify a group of young AML patients with poor prognosis. We used reverse transcription polymerase chain reaction (PCR) to screen retrospectively diagnostic samples from 54 unselected pediatric AML patients and designed a real time quantitative PCR assay to track individual patient response to treatment. Four positive cases (7%) were identified; three arising de novo and one therapy related AML. All had intermediate risk cytogenetic markers and a concurrent FLT3‐ITD but lacked NPM1 and CEBPA mutations. The patients had a poor response to therapy and all proceeded to hematopoietic stem cell transplant. These data lend support to the adoption of screening for NUP98‐NSD1 in pediatric AML without otherwise favorable genetic markers. The role of quantitative PCR is also highlighted as a potential tool for managing NUP98‐NSD1 positive patients post‐treatment.
The New England Journal of Medicine | 2016
Robert Kerrin Hills; Adam Ivey; David Grimwade
Citing this paper Please note that where the full-text provided on Kings Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publishers definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publishers website for any subsequent corrections.Citing this paper Please note that where the full-text provided on Kings Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publishers definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publishers website for any subsequent corrections.
International Journal of Hematology | 2013
Gordon Taylor; Adam Ivey; Benedict Milner; David Grimwade; Dominic Culligan
Here, we report an unusual case of acute myeloid leukaemia with mutated NPM1 presenting with pancytopenia and leukoerythroblastosis, without circulating blasts and bone marrow necrosis with numerous Charcot–Leyden crystals, but no eosinophilia.
Biochimica et Biophysica Acta | 2018
William Grey; Adam Ivey; Thomas A. Milne; Torsten Haferlach; David Grimwade; Frank Uhlmann; Edwige Voisset; Veronica P. C. C. Yu
The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCFSkp2 and APCCdc20. Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the MllN and MllC subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia.