Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Grimwade is active.

Publication


Featured researches published by David Grimwade.


Blood | 2010

Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet

Hartmut Döhner; Elihu H. Estey; S. Amadori; Frederick R. Appelbaum; Thomas Büchner; Alan Kenneth Burnett; Hervé Dombret; Pierre Fenaux; David Grimwade; Richard A. Larson; Francesco Lo-Coco; Tomoki Naoe; Dietger Niederwieser; Gert J. Ossenkoppele; Miguel A. Sanz; Jorge Sierra; Martin S. Tallman; Bob Löwenberg; Clara D. Bloomfield

In 2003, an international working group last reported on recommendations for diagnosis, response assessment, and treatment outcomes in acute myeloid leukemia (AML). Since that time, considerable progress has been made in elucidating the molecular pathogenesis of the disease that has resulted in the identification of new diagnostic and prognostic markers. Furthermore, therapies are now being developed that target disease-associated molecular defects. Recent developments prompted an international expert panel to provide updated evidence- and expert opinion-based recommendations for the diagnosis and management of AML, that contain both minimal requirements for general practice as well as standards for clinical trials. A new standardized reporting system for correlation of cytogenetic and molecular genetic data with clinical data is proposed.


Leukemia | 2003

Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program.

Jean Gabert; Emmanuel Beillard; V H J van der Velden; W Bi; David Grimwade; Niels Pallisgaard; Gisela Barbany; G Cazzaniga; Jean-Michel Cayuela; H Cavé; Fabrizio Pane; J L E Aerts; D De Micheli; X Thirion; V Pradel; Marcos González; S Viehmann; Maria Malec; G. Saglio; J J M van Dongen

Detection of minimal residual disease (MRD) has proven to provide independent prognostic information for treatment stratification in several types of leukemias such as childhood acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and acute promyelocytc leukemia. This report focuses on the accurate quantitative measurement of fusion gene (FG) transcripts as can be applied in 35–45% of ALL and acute myeloid leukemia, and in more than 90% of CML. A total of 26 European university laboratories from 10 countries have collaborated to establish a standardized protocol for TaqMan-based real-time quantitative PCR (RQ-PCR) analysis of the main leukemia-associated FGs within the Europe Against Cancer (EAC) program. Four phases were scheduled: (1) training, (2) optimization, (3) sensitivity testing and (4) patient sample testing. During our program, three quality control rounds on a large series of coded RNA samples were performed including a balanced randomized assay, which enabled final validation of the EAC primer and probe sets. The expression level of the nine major FG transcripts in a large series of stored diagnostic leukemia samples (n=278) was evaluated. After normalization, no statistically significant difference in expression level was observed between bone marrow and peripheral blood on paired samples at diagnosis. However, RQ-PCR revealed marked differences in FG expression between transcripts in leukemic samples at diagnosis that could account for differential assay sensitivity. The development of standardized protocols for RQ-PCR analysis of FG transcripts provides a milestone for molecular determination of MRD levels. This is likely to prove invaluable to the management of patients entered into multicenter therapeutic trials.


Blood | 2009

Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet

Miguel A. Sanz; David Grimwade; Martin S. Tallman; Bob Löwenberg; Pierre Fenaux; Elihu H. Estey; Tomoki Naoe; Eva Lengfelder; Thomas Büchner; Hartmut Döhner; Alan Kenneth Burnett; Francesco Lo-Coco

The introduction of all-trans retinoic acid (ATRA) and, more recently, arsenic trioxide (ATO) into the therapy of acute promyelocytic leukemia (APL) has revolutionized the management and outcome of this disease. Several treatment strategies using these agents, usually in combination with chemotherapy, but also without or with minimal use of cytotoxic agents, have provided excellent therapeutic results. Cure of APL patients, however, is also dependent on peculiar aspects related to the management and supportive measures that are crucial to counteract life-threatening complications associated with the disease biology and molecularly targeted treatment. The European LeukemiaNet recently appointed an international panel of experts to develop evidence- and expert opinion-based guidelines on the diagnosis and management of APL. Together with providing current indications on genetic diagnosis, modern risk-adapted front-line therapy and salvage treatment, the review contains specific recommendations for the identification and management of most important complications such as the bleeding disorder, APL differentiation syndrome, QT prolongation and other ATRA- and ATO-related toxicities, as well as for molecular assessment of response to treatment. Finally, the approach to special situations is also discussed, including management of APL in children, elderly patients, and pregnant women.


Blood | 2008

Guidelines on the management of acute promyelocytic leukemia: Recommendations from an expert panel on behalf of the European LeukemiaNet

Miguel A. Sanz; David Grimwade; Martin S. Tallman; Bob Löwenberg; Pierre Fenaux; Elihu H. Estey; Tomoki Naoe; Eva Lengfelder; Thomas Büchner; Hartmut Döhner; Alan Kenneth Burnett; Francesco Lo-Coco

The introduction of all-trans retinoic acid (ATRA) and, more recently, arsenic trioxide (ATO) into the therapy of acute promyelocytic leukemia (APL) has revolutionized the management and outcome of this disease. Several treatment strategies using these agents, usually in combination with chemotherapy, but also without or with minimal use of cytotoxic agents, have provided excellent therapeutic results. Cure of APL patients, however, is also dependent on peculiar aspects related to the management and supportive measures that are crucial to counteract life-threatening complications associated with the disease biology and molecularly targeted treatment. The European LeukemiaNet recently appointed an international panel of experts to develop evidence- and expert opinion-based guidelines on the diagnosis and management of APL. Together with providing current indications on genetic diagnosis, modern risk-adapted front-line therapy and salvage treatment, the review contains specific recommendations for the identification and management of most important complications such as the bleeding disorder, APL differentiation syndrome, QT prolongation and other ATRA- and ATO-related toxicities, as well as for molecular assessment of response to treatment. Finally, the approach to special situations is also discussed, including management of APL in children, elderly patients, and pregnant women.


Blood | 2017

Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel

Hartmut Döhner; Elihu H. Estey; David Grimwade; Sergio Amadori; Frederick R. Appelbaum; Thomas Büchner; Hervé Dombret; Benjamin L. Ebert; Pierre Fenaux; Richard A. Larson; Ross L. Levine; Francesco Lo-Coco; Tomoki Naoe; Dietger Niederwieser; Gert J. Ossenkoppele; Miguel A. Sanz; Jorge Sierra; Martin S. Tallman; Hwei-Fang Tien; Andrew Wei; Bob Löwenberg; Clara D. Bloomfield

The first edition of the European LeukemiaNet (ELN) recommendations for diagnosis and management of acute myeloid leukemia (AML) in adults, published in 2010, has found broad acceptance by physicians and investigators caring for patients with AML. Recent advances, for example, in the discovery of the genomic landscape of the disease, in the development of assays for genetic testing and for detecting minimal residual disease (MRD), as well as in the development of novel antileukemic agents, prompted an international panel to provide updated evidence- and expert opinion-based recommendations. The recommendations include a revised version of the ELN genetic categories, a proposal for a response category based on MRD status, and criteria for progressive disease.


Nature Genetics | 2010

Mutation of the RAD51C gene in a Fanconi anemia- like disorder

Fiona Vaz; Helmut Hanenberg; Beatrice Schuster; Karen Barker; Constanze Wiek; Verena Erven; Kornelia Neveling; Daniela Endt; Ian Kesterton; Flavia Autore; Franca Fraternali; Marcel Freund; Linda Hartmann; David Grimwade; Roland G. Roberts; Heiner Schaal; Shehla Mohammed; Nazneen Rahman; Detlev Schindler; Christopher G. Mathew

Fanconi anemia (FA) is a rare chromosomal-instability disorder associated with a variety of developmental abnormalities, bone marrow failure and predisposition to leukemia and other cancers. We have identified a homozygous missense mutation in the RAD51C gene in a consanguineous family with multiple severe congenital abnormalities characteristic of FA. RAD51C is a member of the RAD51-like gene family involved in homologous recombination–mediated DNA repair. The mutation results in loss of RAD51 focus formation in response to DNA damage and in increased cellular sensitivity to the DNA interstrand cross-linking agent mitomycin C and the topoisomerase-1 inhibitor camptothecin. Thus, biallelic germline mutations in a RAD51 paralog are associated with an FA-like syndrome.


Journal of Clinical Oncology | 2009

Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study

Daniel Cilloni; Aline Renneville; Fabienne Hermitte; Robert Kerrin Hills; Sarah B. Daly; Jelena V. Jovanovic; Enrico Gottardi; Milena Fava; Susanne Schnittger; Tamara Weiss; Barbara Izzo; Josep Nomdedeu; Adrian van der Heijden; Bert A. van der Reijden; Joop H. Jansen; V H J van der Velden; Hans Beier Ommen; Claude Preudhomme; Giuseppe Saglio; David Grimwade

PURPOSE Risk stratification in acute myeloid leukemia (AML) is currently based on pretreatment characteristics. It remains to be established whether relapse risk can be better predicted through assessment of minimal residual disease (MRD). One proposed marker is the Wilms tumor gene WT1, which is overexpressed in most patients with AML, thus providing a putative target for immunotherapy, although in the absence of a standardized assay, its utility for MRD monitoring remains controversial. PATIENTS AND METHODS Nine published and in-house real-time quantitative polymerase chain reaction WT1 assays were systematically evaluated within the European LeukemiaNet; the best-performing assay was applied to diagnostic AML samples (n = 620), follow-up samples from 129 patients treated with intensive combination chemotherapy, and 204 normal peripheral blood (PB) and bone marrow (BM) controls. RESULTS Considering relative levels of expression detected in normal PB and BM, WT1 was sufficiently overexpressed to discriminate > or = 2-log reduction in transcripts in 46% and 13% of AML patients, according to the respective follow-up sample source. In this informative group, greater WT1 transcript reduction after induction predicted reduced relapse risk (hazard ratio, 0.54 per log reduction; 95% CI, 0.36 to 0.83; P = .004) that remained significant when adjusted for age, WBC count, and cytogenetics. Failure to reduce WT1 transcripts below the threshold limits defined in normal controls by the end of consolidation also predicted increased relapse risk (P = .004). CONCLUSION Application of a standardized WT1 assay provides independent prognostic information in AML, lending support to incorporation of early assessment of MRD to develop more robust risk scores, to enhance risk stratification, and to identify patients who may benefit from allogeneic transplantation.


Journal of Clinical Oncology | 2009

Prospective Minimal Residual Disease Monitoring to Predict Relapse of Acute Promyelocytic Leukemia and to Direct Pre-Emptive Arsenic Trioxide Therapy

David Grimwade; Jelena V. Jovanovic; Robert Kerrin Hills; E Nugent; Yashma Patel; Rajinder Flora; Daniela Diverio; Katy Jones; Hannah Aslett; Elaine Batson; Kristian Rennie; Roger Angell; Richard E. Clark; Ellen Solomon; Francesca Lo-Coco; Keith Wheatley; Alan Kenneth Burnett

PURPOSE Molecular diagnostics and early assessment of treatment response that use methodologies capable of detecting submicroscopic disease can distinguish subgroups of patients with leukemia at differing relapse risk. Such information is being incorporated into risk-stratified protocols; however, there are few data concerning prospective use of sequential minimal residual disease (MRD) monitoring to identify more precisely those patients destined to experience relapse, which would allow more tailored therapies. METHODS Real-time quantitative polymerase chain reaction (RQ-PCR) assays to detect leukemia-specific transcripts (ie, PML-RARA, RARA-PML) were used to prospectively analyze 6,727 serial blood and marrow samples from 406 patients with newly diagnosed acute promyelocytic leukemia (APL) who were receiving all-trans-retinoic acid and anthracycline-based chemotherapy. RESULTS MRD monitoring according to the recommended schedule successfully identified the majority of patients subject to relapse and provided the most powerful predictor of relapse-free survival (RFS) in multivariable analysis (hazard ratio, 17.87; 95% CI, 6.88 to 46.41; P < .0001); MRD monitoring was far superior to presenting WBC (hazard ratio, 1.02; 95% CI, 1.00 to 1.03; P = .02), which is currently widely used to guide therapy. In patients who were predicted to experience relapse on the basis of MRD monitoring, early treatment intervention with arsenic trioxide prevented progression to overt relapse in the majority, and the RFS rate at 1 year from molecular relapse was 73%. By using this strategy, 3-year cumulative incidence of clinical relapse was only 5% in the Medical Research Council AML15 trial. CONCLUSION Rigorous sequential RQ-PCR monitoring provides the strongest predictor of RFS in APL and, when coupled with pre-emptive therapy, provides a valid strategy to reduce rates of clinical relapse. This provides a model for development of a more individualized approach to management of other molecularly defined subtypes of acute leukemia.


The New England Journal of Medicine | 2016

Assessment of Minimal Residual Disease in Standard-Risk AML.

Adam Ivey; Robert Kerrin Hills; Michael A. Simpson; Jelena V. Jovanovic; Amanda F. Gilkes; Angela Grech; Yashma Patel; Neesa Bhudia; Hassan Farah; Joanne Mason; Kerry Wall; Susanna Akiki; Michael Griffiths; Ellen Solomon; Frank McCaughan; David C. Linch; Rosemary E. Gale; Paresh Vyas; Sylvie Freeman; Nigel H. Russell; Alan Kenneth Burnett; David Grimwade

BACKGROUND Despite the molecular heterogeneity of standard-risk acute myeloid leukemia (AML), treatment decisions are based on a limited number of molecular genetic markers and morphology-based assessment of remission. Sensitive detection of a leukemia-specific marker (e.g., a mutation in the gene encoding nucleophosmin [NPM1]) could improve prognostication by identifying submicroscopic disease during remission. METHODS We used a reverse-transcriptase quantitative polymerase-chain-reaction assay to detect minimal residual disease in 2569 samples obtained from 346 patients with NPM1-mutated AML who had undergone intensive treatment in the National Cancer Research Institute AML17 trial. We used a custom 51-gene panel to perform targeted sequencing of 223 samples obtained at the time of diagnosis and 49 samples obtained at the time of relapse. Mutations associated with preleukemic clones were tracked by means of digital polymerase chain reaction. RESULTS Molecular profiling highlighted the complexity of NPM1-mutated AML, with segregation of patients into more than 150 subgroups, thus precluding reliable outcome prediction. The determination of minimal-residual-disease status was more informative. Persistence of NPM1-mutated transcripts in blood was present in 15% of the patients after the second chemotherapy cycle and was associated with a greater risk of relapse after 3 years of follow-up than was an absence of such transcripts (82% vs. 30%; hazard ratio, 4.80; 95% confidence interval [CI], 2.95 to 7.80; P<0.001) and a lower rate of survival (24% vs. 75%; hazard ratio for death, 4.38; 95% CI, 2.57 to 7.47; P<0.001). The presence of minimal residual disease was the only independent prognostic factor for death in multivariate analysis (hazard ratio, 4.84; 95% CI, 2.57 to 9.15; P<0.001). These results were validated in an independent cohort. On sequential monitoring of minimal residual disease, relapse was reliably predicted by a rising level of NPM1-mutated transcripts. Although mutations associated with preleukemic clones remained detectable during ongoing remission after chemotherapy, NPM1 mutations were detected in 69 of 70 patients at the time of relapse and provided a better marker of disease status. CONCLUSIONS The presence of minimal residual disease, as determined by quantitation of NPM1-mutated transcripts, provided powerful prognostic information independent of other risk factors. (Funded by Bloodwise and the National Institute for Health Research; Current Controlled Trials number, ISRCTN55675535.).


Journal of Clinical Oncology | 2010

Cytogenetics of childhood Acute Myeloid Leukemia: United Kingdom Medical Research Council treatment trials AML 10 and 12

Chirstine J. Harrison; Robert Kerrin Hills; Anthony V. Moorman; David Grimwade; Ian Hann; David Webb; Keith Wheatley; Siebold S. N. de Graaf; Eva van den Berg; Alan Kenneth Burnett; Brenda Gibson

PURPOSE Karyotype is an independent indicator of prognosis in acute myeloid leukemia (AML) that is widely applied to risk-adapted therapy. Because AML is rare in children, the true prognostic significance of individual chromosomal abnormalities in this age group remains unclear. PATIENTS AND METHODS This cytogenetic study of 729 childhood patients classified them into 22 subgroups and evaluated their incidence and risk. RESULTS Rearrangements of 11q23 were the most frequent abnormality found in approximately 16% of patients, with 50% of these in infants. The outcome for all patients with 11q23 abnormalities was intermediate; no difference was observed for those with t(9;11)(p21-22;q23). The core binding factor leukemias with the translocations t(8;21)(q22;q22) and inv(16)(p13q22) occurred at incidences of 14% and 7%, respectively, predominantly in older children, and their prognosis was favorable. An adverse outcome was observed in patients with monosomy 7, abnormalities of 5q, and t(6;9)(p23;q34). Abnormalities of 3q and complex karyotypes, in the absence of favorable-risk features, have been associated with an adverse outcome in adults, but the results were not significant in this childhood series. However, the presence of 12p abnormalities predicted a poor outcome. CONCLUSION Because the spectrum of chromosomal changes and their risk association seem to differ between children and adults with AML, biologic differences are emerging, which will contribute to the redefinition of risk stratification for different age groups in the future.

Collaboration


Dive into the David Grimwade's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvie Freeman

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bob Löwenberg

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adam Ivey

King's College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge