Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam K. Jagielski is active.

Publication


Featured researches published by Adam K. Jagielski.


Metabolism-clinical and Experimental | 2003

Relationship Between Gluconeogenesis and Glutathione Redox State in Rabbit Kidney-Cortex Tubules

Katarzyna Winiarska; Jakub Dr⊙ak; Michal̵ Węgrzynowicz; Adam K. Jagielski; Jadwiga Bryl̵a

The intracellular glutathione redox state and the rate of glucose formation were studied in rabbit kidney-cortex tubules. In the presence of substrates effectively utilized for glucose formation, ie, aspartate + glycerol + octanoate, alanine + glycerol + octanoate, malate, or pyruvate, the intracellular reduced glutathione/oxidized glutathione (GSH/GSSG) ratios were significantly higher than those under conditions of negligible glucose production. Changes in the intracellular GSH/GSSG ratio corresponded to those in glucose-6-phosphate content and reduced nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP(+)) ratio obtained from malate/pyruvate measurements. Gluconeogenesis stimulation by extracellular adenosine triphosphate (ATP) or inosine caused an elevation of the intracellular GSH/GSSG and NADPH/NADP(+) ratios, as well as glucose-6-phosphate level. Surprisingly, in the presence of 5 mmol/L glucose, both the intracellular GSH/GSSG and NADPH/NADP(+) ratios and glucose-6-phosphate content were almost as low as under conditions of negligible glucose synthesis. L-buthionine sulfoximine (BSO)-induced decline in both the intracellular glutathione level and redox state resulted in inhibition of gluconeogenesis accompanied by accumulation of phosphotrioses and a decrease in fructose-1,6-bisphosphate content, while cysteine precursors altered neither GSH redox state nor the rate of glucose formation. In view of the data, it seems likely that: (1) intensive gluconeogenesis rather than extracellular glucose is responsible for maintaining a high intracellular GSH/GSSG ratio due to effective glucose-6-phosphate delivery for NADPH generation via the pentose phosphate pathway; (2) a decline in the intracellular glutathione level and/or redox state causes a decrease in glucose synthesis resulting from a diminished flux through aldolase; (3) induced by cysteine precursors, elevation of the intracellular GSH level does not affect the rate of glucose formation, probably due to no changes in the intracellular GSH/GSSG ratio.


Journal of Pineal Research | 2005

Melatonin-induced modulation of glucose metabolism in primary cultures of rabbit kidney-cortex tubules.

Rafal Derlacz; Piotr Poplawski; Malgorzata Napierala; Adam K. Jagielski; Jadwiga Bryla

Abstract:  The effect of melatonin on glucose metabolism in the presence and absence of insulin has been investigated in the primary cultures of renal tubules grown in a defined medium. In the absence of glucose in the medium containing 5 μg/mL of insulin and 2 mm alanine + 5 mm glycerol + 0.5 mm octanoate, 100 nm melatonin stimulated both glucose and lactate synthesis, while in the medium devoid of insulin melatonin action was negligible. Melatonin‐induced increase in glucose and lactate synthesis was accompanied by an enhancement of alanine and glycerol consumption. In view of measurements of [U‐14C]l‐alanine and [U‐14C]l‐glycerol incorporation into glucose, it is likely that melatonin increased alanine utilization for glucose production, while accelerated lactate synthesis was because of an enhanced glycerol consumption. As (i) 10 nm luzindole attenuated the stimulatory action of melatonin on glucose formation and (ii) the indole induced a decrease in intracellular cAMP level, it seems likely that in renal tubules melatonin binds to ML1 membrane receptor subtype. In view of a decline of intracellular fructose‐1,6‐bisphosphate content accompanied by a significant rise in hexose‐6‐phosphate and glucose levels, melatonin might result in an acceleration of flux through fructose‐1,6‐bisphosphatase probably because of an increase in the active, dephosphorylated form of this enzyme. Thus, the administration of melatonin in combination with insulin might be beneficial for diabetic therapy because of protection against hypoglycemia.


PLOS ONE | 2013

Molecular Identification of Carnosine N-Methyltransferase as Chicken Histamine N-Methyltransferase-Like Protein (HNMT-Like)

Jakub Drozak; Lukasz Chrobok; Olga Poleszak; Adam K. Jagielski; Rafal Derlacz

Anserine (beta-alanyl-N(Pi)-methyl-L-histidine), a naturally occurring derivative of carnosine (beta-alanyl-L-histidine), is an abundant constituent of skeletal muscles and brain of many vertebrates. Although it has long been proposed to serve as a proton buffer, radicals scavenger and transglycating agent, its physiological function remains obscure. The formation of anserine is catalyzed by carnosine N-methyltransferase which exhibits unknown molecular identity. In the present investigation, we have purified carnosine N-methyltransferase from chicken pectoral muscle about 640-fold until three major polypeptides of about 23, 26 and 37 kDa coeluting with the enzyme were identified in the preparation. Mass spectrometry analysis of these polypeptides resulted in an identification of histamine N-methyltransferase-like (HNMT-like) protein as the only meaningful candidate. Analysis of GenBank database records indicated that the hnmt-like gene might be a paralogue of histamine N-methyltransferase gene, while comparison of their protein sequences suggested that HNMT-like protein might have acquired a new activity. Chicken HNMT-like protein was expressed in COS-7 cells, purified to homogeneity, and shown to catalyze the formation of anserine as confirmed by both chromatographic and mass spectrometry analysis. Both specificity and kinetic studies carried out on the native and recombinant enzyme were in agreement with published data. Particularly, several compounds structurally related to carnosine, including histamine and L-histidine, were tested as potential substrates for the enzyme, and carnosine was the only methyl group acceptor. The identification of the gene encoding carnosine N-methyltransferase might be beneficial for estimation of the biological functions of anserine.


Amino Acids | 2015

Arginine deprivation affects glioblastoma cell adhesion, invasiveness and actin cytoskeleton organization by impairment of β‑actin arginylation

Iuliia Pavlyk; Adam K. Jagielski; Jakub Drozak; Anna Wasik; Galyna Pereverzieva; Marta Olchowik; Leoni A. Kunz-Schugart; Oleh V. Stasyk; Maria Jolanta Redowicz

A deficit of exogenous arginine affects growth and viability of numerous cancer cells. Although arginine deprivation-based strategy is currently undergoing clinical trials, molecular mechanisms of tumor cells’ response to arginine deprivation are not yet elucidated. We have examined effects of arginine starvation on cell motility, adhesion and invasiveness as well as on actin cytoskeleton organization of human glioblastoma cells. We observed for the first time that arginine, but not lysine, starvation affected cell morphology, significantly inhibited their motility and invasiveness, and impaired adhesion. No effects on glia cells were observed. Also, arginine deprivation in glioblastoma evoked specific changes in actin assembly, decreased β-actin filament content, and affected its N-terminal arginylation. We suggest that alterations in organization of β-actin resulted from a decrease of its arginylation could be responsible for the observed effects of arginine deprivation on cell invasiveness and migration. Our data indicate that arginine deprivation-based treatment strategies could inhibit, at least transiently, the invasion process of highly malignant brain tumors and may have a potential for combination therapy to extend overall patient survival.


Free Radical Biology and Medicine | 2015

ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity

Katarzyna Winiarska; Robert Jarzyna; Jolanta Maria Dzik; Adam K. Jagielski; Michal Grabowski; Agata Nowosielska; Dorota Focht; Bartosz Sierakowski

The aim of this study was to elucidate the mechanisms involved in the inhibition of renal gluconeogenesis occurring under conditions of lowered activity of NADPH oxidase (Nox), the enzyme considered to be one of the main sources of reactive oxygen species in kidneys. The in vitro experiments were performed on primary cultures of rat renal proximal tubules, with the use of apocynin, a selective Nox inhibitor, and TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a potent superoxide radical scavenger. In the in vivo experiments, Zucker diabetic fatty (ZDF) rats, a well established model of diabetes type 2, were treated with apocynin solution in drinking water. The main in vitro findings are the following: (1) both apocynin and TEMPOL attenuate the rate of gluconeogenesis, inhibiting the step catalyzed by phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the process; (2) in the presence of the above-noted compounds the expression of PEPCK and the phosphorylation of transcription factor CREB and ERK1/2 kinases are lowered; (3) both U0126 (MEK inhibitor) and 3-(2-aminoethyl)-5-((4-ethoxyphenyl)methylene)-2,4-thiazolidinedione (ERK inhibitor) diminish the rate of glucose synthesis via mechanisms similar to those of apocynin and TEMPOL. The observed apocynin in vivo effects include: (1) slight attenuation of hyperglycemia; (2) inhibition of renal gluconeogenesis; (3) a decrease in renal PEPCK activity and content. In view of the results summarized above, it can be concluded that: (1) the lowered activity of the ERK1/2 pathway is of importance for the inhibition of renal gluconeogenesis found under conditions of lowered superoxide radical production by Nox; (2) the mechanism of this phenomenon includes decreased PEPCK expression, resulting from diminished activity of transcription factor CREB; (3) apocynin-evoked inhibition of renal gluconeogenesis contributes to the hypoglycemic action of this compound observed in diabetic animals. Thus, the study has delivered some new insights into the recently discussed issue of the usefulness of Nox inhibition as a potential antidiabetic strategy.


Biochemistry and Cell Biology | 2014

Proinsulin C-peptide potentiates the inhibitory action of insulin on glucose synthesis in primary cultured rabbit kidney-cortex tubules: metabolic studies.

Michal Usarek; Adam K. Jagielski; Paulina Krempa; Anna Dylewska; Anna Kiersztan; Jakub Drozak; Agnieszka Girstun; Rafal Derlacz; Jadwiga Bryla

Effects of equimolar concentrations of proinsulin C-peptide and insulin on glucose synthesis were studied in primary cultures of rabbit kidney-cortex tubules grown in the presence of alanine, glycerol, and octanoate. The rhodamine-labeled C-peptide entered renal tubular cells and localized in nuclei, both in the presence and absence of insulin; preincubations with the unlabeled compound inhibited internalization. C-peptide did not affect glucose formation when added alone but potentiated the inhibitory action of insulin by about 20% due to a decrease in flux through glucose-6-phosphate isomerase (GPI) and (or) glucose-6-phosphatase (G6Pase). GPI inhibition was caused by: (i) increased intracellular contents of fructose-1,6-bisphosphate and fructose-1-phosphate, inhibitors of the enzyme and (ii) reduced level of the phosphorylated GPI, which exhibits higher enzymatic activity in the presence of casein kinase 2. A decrease in flux through G6Pase, due to diminished import of G6P by G6P-transporter from the cytoplasm into endoplasmic reticulum lumen, is also suggested. The data show for the first time that in the presence of insulin and C-peptide, both GPI and G6P-ase may act as regulatory enzymes of renal gluconeogenic pathway.


Journal of Photochemistry and Photobiology B-biology | 2001

Peroxidative reactions attenuate oxygen effect on spectroscopic properties of isolated chloroplasts

Maciej Garstka; Adam K. Jagielski

Steady-state absorption and fluorescence excitation spectra have been measured at 25 degrees C in order to elucidate the differences between isolated chloroplasts from pea (chilling-sensitive plant) and bean (chilling-tolerant plant) and their response to oxygen treatment. A weaker light harvesting in bean in comparison with pea chloroplasts is related to higher free fatty acids level and extended peroxidation activities of bean chloroplasts. Peroxidation of free fatty acids in bean chloroplasts results in an accumulation of oxygenated forms of fatty acids demonstrated by a large negative band around 400 nm in absorption difference spectra, while the excitation spectra are not significantly altered. Similar changes have been observed in the lipase-treated pea chloroplasts. In contrast, in both pea and bean chloroplasts exhibiting no peroxidation due to antimycin A treatment, oxygen induces a pronounced absorbance increase in the regions around 435, 470 and 674 nm indicating the chloroplast swelling. A decline of chlorophyll fluorescence excitation caused by oxygen, may result from a decrease in energy transfer from antennae complexes to chlorophyll species emitting at both 680 and 740 nm. The oxygen-induced changes are partially reversed upon restoration of anaerobic conditions. The presented data show for the first time, that in contrast to pea chloroplasts the peroxidation abolishes an oxygen-induced decrease in light harvesting in bean chloroplasts, i.e., a chilling-sensitive plant.


bioRxiv | 2018

SETD3 protein is the actin-specific histidine N-methyltransferase

Sebastian Kwiatkowski; Agnieszka K Seliga; Maria Veiga-da-Cunha; Didier Vertommen; Marianna Terreri; Takao Ishikawa; Iwona Grabowska; Adam K. Jagielski; Jakub Drozak

Protein histidine methylation is rarely studied posttranslational modification of unknown biochemical importance. In vertebrates, only a few methylhistidne-containing proteins have been reported so far, including β-actin as an essential example. The evolutionary conserved methylation of β-actin H73 residue is catalyzed by a specific histidine N-methyltransferase that has never been identified molecularly. In the present investigation, we have purified actin-specific histidine N-methyltransferase from rat muscles about 1200-fold. Its activity was studied by the radiochemical assay employing either homogeneous recombinant human β-actin produced in E. coli or its mutated form exhibiting substitution of H73 by Ala residue (H73A) as substrates. Three polypeptides of ≈65, 75 and 90 kDa coeluting with the enzyme activity were identified in the preparation. Mass spectrometry analysis of these polypeptides resulted in the identification of SETD3 methyltransferase as the only plausible candidate. Rat SETD3 and its human ortholog were expressed in COS-7 cells, purified to homogeneity and shown to catalyze methylation of β-actin at H73 residue as confirmed by mass spectrometry analysis. The SETD3 enzyme was active towards a synthetic peptide corresponding to residues 69-77 of β-actin, but not to its mutated form exhibiting His-to-Ala substitution. Finally, Setd3-deficient HAP1 cells were devoid of methylated H73 in β-actin and exhibited phenotypic changes, including a decrease in F-actin content and an increased glycolytic activity. We conclude that SETD3 is the actin-specific histidine N-methyltransferase. The data show for the first time the molecular identity of protein histidine N-methyltransferase in vertebrates and throw new light on the substrate specificity of SET-domain-containing enzymes.


Biochemistry and Cell Biology | 2008

PPAR-γ-independent inhibitory effect of rosiglitazone on glucose synthesis in primary cultured rabbit kidney-cortex tubules

Rafal Derlacz; KarolHycK. Hyc; MichalUsarekM. Usarek; Adam K. Jagielski; JakubDrozakJ. Drozak; RobertJarzynaR. Jarzyna


Alcohol and Alcoholism | 2004

AMINO-ACID-DEPENDENT, DIFFERENTIAL EFFECTS OF ETHANOL ON GLUCOSE PRODUCTION IN RABBIT KIDNEY-CORTEX TUBULES

Rafal Derlacz; Adam K. Jagielski; Anna Kiersztan; Katarzyna Winiarska; Jakub Drozak; Piotr Poplawski; Michal Wegrzynowicz; Katarzyna Chodnicka; Jadwiga Bryla

Collaboration


Dive into the Adam K. Jagielski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge