Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafal Derlacz is active.

Publication


Featured researches published by Rafal Derlacz.


Antioxidants & Redox Signaling | 2012

Heme Oxygenase-1 Inhibits Myoblast Differentiation by Targeting Myomirs

Magdalena Kozakowska; Maciej Ciesla; Anna Stefanska; Klaudia Skrzypek; Halina Was; Agnieszka Jazwa; Anna Grochot-Przeczek; Jerzy Kotlinowski; Agnieszka Szymula; Aleksandra Bartelik; Milena Mazan; Oleksandr Yagensky; Urszula Florczyk; Krzysztof Lemke; Anna Zebzda; Grzegorz Dyduch; Witold Nowak; Krzysztof Szade; Jacek Stepniewski; Marcin Majka; Rafal Derlacz; Agnieszka Loboda; Jozef Dulak; Alicja Jozkowicz

AIMS Heme oxygenase-1 (HMOX1) is a cytoprotective enzyme degrading heme to biliverdin, iron ions, and carbon monoxide, whose expression is induced in response to oxidative stress. Its overexpression has been suggested as a strategy improving survival of transplanted muscle precursors. RESULTS Here we demonstrated that HMOX1 inhibits differentiation of myoblasts and modulates miRNA processing: downregulates Lin28 and DGCR8, lowers the total pool of cellular miRNAs, and specifically blocks induction of myomirs. Genetic or pharmacological activation of HMOX1 in C2C12 cells reduces the abundance of miR-1, miR-133a, miR-133b, and miR-206, which is accompanied by augmented production of SDF-1 and miR-146a, decreased expression of MyoD, myogenin, and myosin, and disturbed formation of myotubes. Similar relationships between HMOX1 and myomirs were demonstrated in murine primary satellite cells isolated from skeletal muscles of HMOX1(+/+), HMOX1(+/-), and HMOX1(-/-) mice or in human rhabdomyosarcoma cell lines. Inhibition of myogenic development is independent of antioxidative properties of HMOX1. Instead it is mediated by CO-dependent inhibition of c/EBPδ binding to myoD promoter, can be imitated by SDF-1, and partially reversed by enforced expression of miR-133b and miR-206. Control C2C12 myoblasts injected to gastrocnemius muscles of NOD-SCID mice contribute to formation of muscle fibers. In contrast, HMOX1 overexpressing C2C12 myoblasts form fast growing, hyperplastic tumors, infiltrating the surrounding tissues, and disseminating to the lungs. INNOVATION We evidenced for the first time that HMOX1 inhibits differentiation of myoblasts, affects the miRNA processing enzymes, and modulates the miRNA transcriptome. CONCLUSION HMOX1 improves the survival of myoblasts, but concurrently through regulation of myomirs, may act similarly to oncogenes, increasing the risk of hyperplastic growth of myogenic precursors.


Genetic Vaccines and Therapy | 2010

Combined vascular endothelial growth factor-A and fibroblast growth factor 4 gene transfer improves wound healing in diabetic mice

Agnieszka Jazwa; Paulina Kucharzewska; Justyna Leja; Anna Zagorska; Aleksandra Sierpniowska; Jacek Stepniewski; Magdalena Kozakowska; Hevidar Taha; Takahiro Ochiya; Rafal Derlacz; Elisa Vähäkangas; Seppo Ylä-Herttuala; Alicja Jozkowicz; Jozef Dulak

BackgroundImpaired wound healing in diabetes is related to decreased production of growth factors. Hence, gene therapy is considered as promising treatment modality. So far, efforts concentrated on single gene therapy with particular emphasis on vascular endothelial growth factor-A (VEGF-A). However, as multiple proteins are involved in this process it is rational to test new approaches. Therefore, the aim of this study was to investigate whether single AAV vector-mediated simultaneous transfer of VEGF-A and fibroblast growth factor 4 (FGF4) coding sequences will improve the wound healing over the effect of VEGF-A in diabetic (db/db) mice.MethodsLeptin receptor-deficient db/db mice were randomized to receive intradermal injections of PBS or AAVs carrying β-galactosidase gene (AAV-LacZ), VEGF-A (AAV-VEGF-A), FGF-4 (AAV-FGF4-IRES-GFP) or both therapeutic genes (AAV-FGF4-IRES-VEGF-A). Wound healing kinetics was analyzed until day 21 when all animals were sacrificed for biochemical and histological examination.ResultsComplete wound closure in animals treated with AAV-VEGF-A was achieved earlier (day 19) than in control mice or animals injected with AAV harboring FGF4 (both on day 21). However, the fastest healing was observed in mice injected with bicistronic AAV-FGF4-IRES-VEGF-A vector (day 17). This was paralleled by significantly increased granulation tissue formation, vascularity and dermal matrix deposition. Mechanistically, as shown in vitro, FGF4 stimulated matrix metalloproteinase-9 (MMP-9) and VEGF receptor-1 expression in mouse dermal fibroblasts and when delivered in combination with VEGF-A, enhanced their migration.ConclusionCombined gene transfer of VEGF-A and FGF4 can improve reparative processes in the wounded skin of diabetic mice better than single agent treatment.


Journal of Pineal Research | 2005

Melatonin-induced modulation of glucose metabolism in primary cultures of rabbit kidney-cortex tubules.

Rafal Derlacz; Piotr Poplawski; Malgorzata Napierala; Adam K. Jagielski; Jadwiga Bryla

Abstract:  The effect of melatonin on glucose metabolism in the presence and absence of insulin has been investigated in the primary cultures of renal tubules grown in a defined medium. In the absence of glucose in the medium containing 5 μg/mL of insulin and 2 mm alanine + 5 mm glycerol + 0.5 mm octanoate, 100 nm melatonin stimulated both glucose and lactate synthesis, while in the medium devoid of insulin melatonin action was negligible. Melatonin‐induced increase in glucose and lactate synthesis was accompanied by an enhancement of alanine and glycerol consumption. In view of measurements of [U‐14C]l‐alanine and [U‐14C]l‐glycerol incorporation into glucose, it is likely that melatonin increased alanine utilization for glucose production, while accelerated lactate synthesis was because of an enhanced glycerol consumption. As (i) 10 nm luzindole attenuated the stimulatory action of melatonin on glucose formation and (ii) the indole induced a decrease in intracellular cAMP level, it seems likely that in renal tubules melatonin binds to ML1 membrane receptor subtype. In view of a decline of intracellular fructose‐1,6‐bisphosphate content accompanied by a significant rise in hexose‐6‐phosphate and glucose levels, melatonin might result in an acceleration of flux through fructose‐1,6‐bisphosphatase probably because of an increase in the active, dephosphorylated form of this enzyme. Thus, the administration of melatonin in combination with insulin might be beneficial for diabetic therapy because of protection against hypoglycemia.


PLOS ONE | 2013

Molecular Identification of Carnosine N-Methyltransferase as Chicken Histamine N-Methyltransferase-Like Protein (HNMT-Like)

Jakub Drozak; Lukasz Chrobok; Olga Poleszak; Adam K. Jagielski; Rafal Derlacz

Anserine (beta-alanyl-N(Pi)-methyl-L-histidine), a naturally occurring derivative of carnosine (beta-alanyl-L-histidine), is an abundant constituent of skeletal muscles and brain of many vertebrates. Although it has long been proposed to serve as a proton buffer, radicals scavenger and transglycating agent, its physiological function remains obscure. The formation of anserine is catalyzed by carnosine N-methyltransferase which exhibits unknown molecular identity. In the present investigation, we have purified carnosine N-methyltransferase from chicken pectoral muscle about 640-fold until three major polypeptides of about 23, 26 and 37 kDa coeluting with the enzyme were identified in the preparation. Mass spectrometry analysis of these polypeptides resulted in an identification of histamine N-methyltransferase-like (HNMT-like) protein as the only meaningful candidate. Analysis of GenBank database records indicated that the hnmt-like gene might be a paralogue of histamine N-methyltransferase gene, while comparison of their protein sequences suggested that HNMT-like protein might have acquired a new activity. Chicken HNMT-like protein was expressed in COS-7 cells, purified to homogeneity, and shown to catalyze the formation of anserine as confirmed by both chromatographic and mass spectrometry analysis. Both specificity and kinetic studies carried out on the native and recombinant enzyme were in agreement with published data. Particularly, several compounds structurally related to carnosine, including histamine and L-histidine, were tested as potential substrates for the enzyme, and carnosine was the only methyl group acceptor. The identification of the gene encoding carnosine N-methyltransferase might be beneficial for estimation of the biological functions of anserine.


Journal of Pineal Research | 2007

Melatonin is more effective than taurine and 5-hydroxytryptophan against hyperglycemia-induced kidney-cortex tubules injury.

Rafal Derlacz; Malgorzata Sliwinska; Anna Piekutowska; Katarzyna Winiarska; Jakub Drozak; Jadwiga Bryla

Abstract:  The antioxidative effects of melatonin (Mel), 5‐hydroxytryptophan (5‐HTP) and taurine (TAU) on hyperglycemia‐induced oxidative stress was investigated in primary cultures of kidney‐cortex tubule cells grown in metabolically and hormonally defined medium. In the presence of 30 mm glucose (hyperglycemic conditions), cell viability was decreased by about 35% in comparison with that estimated in the glucose‐depleted medium probably as a result of induction of apoptosis, as concluded from: (i) chromatin condensation and DNA fragmentation assays, (ii) a significant enhancement of reactive oxygen species (ROS) production, (iii) 8‐hydroxydeoxyguanosine (8‐OHdG) generation, (iv) an increased protein peroxidation and (v) a decline of reduced glutathione (GSH) levels leading to a disturbed glutathione redox state. The addition of 100 μm Mel to the hyperglycemic medium resulted in a twofold decrease in both 8‐OHdG accumulation and protein peroxidation as well as restoration of the control intracellular ROS levels accompanied by a substantial increase in GSH/oxidized glutathione (GSSG) ratio due to a decline in GSSG content. ROS elimination was also achieved in the presence of 1 mm TAU which diminished protein and DNA injuries by about 25% and 30%, respectively. On the contrary, the action of 100 μm 5‐HTP on ROS level, 8‐OHdG generation, protein peroxidation and GSH/GSSG ratio was negligible. Thus, in contrast to 5‐HTP and TAU, Mel might be considered as beneficial for diabetes therapy, particularly in terms of reduction of hyperglycemia‐induced kidney injury.


Cardiovascular Diabetology | 2014

PPARγ activation but not PPARγ haplodeficiency affects proangiogenic potential of endothelial cells and bone marrow-derived progenitors

Jerzy Kotlinowski; Anna Grochot-Przeczek; Hevidar Taha; Magdalena Kozakowska; Bartosz Pilecki; Klaudia Skrzypek; Aleksandra Bartelik; Rafal Derlacz; Anton J.G. Horrevoets; Attila Pap; Laszlo Nagy; Jozef Dulak; Alicja Jozkowicz

BackgroundPeroxisome proliferator-activated receptor-γ (PPARγ) agonists, which have been used as insulin sensitizers in diabetic patients, may improve functions of endothelial cells (ECs). We investigated the effect of PPARγ on angiogenic activities of murine ECs and bone marrow-derived proangiogenic cells (PACs).MethodsPACs were isolated from bone marrow of 10-12 weeks old, wild type, db/db and PPARγ heterozygous animals. Cells were cultured on fibronectin and gelatin coated dishes in EGM-2MV medium. For in vitro stimulations, rosiglitazone (10 μmol/L) or GW9662 (10 μmol/L) were added to 80% confluent cell cultures for 24 hours. Angiogenic potential of PACs and ECs was tested in vitro and in vivo in wound healing assay and hind limb ischemia model.ResultsECs and PACs isolated from diabetic db/db mice displayed a reduced angiogenic potential in ex vivo and in vitro assays, the effect partially rescued by incubation of cells with rosiglitazone (PPARγ activator). Correction of diabetes by administration of rosiglitazone in vivo did not improve angiogenic potential of isolated PACs or ECs. In a hind limb ischemia model we demonstrated that local injection of conditioned media harvested from wild type PACs improved the blood flow restoration in db/db mice, confirming the importance of paracrine action of the bone marrow-derived cells.Transcriptome analysis showed an upregulation of prooxidative and proinflammatory pathways, and downregulation of several proangiogenic genes in db/db PACs. Interestingly, db/db PACs had also a decreased level of PPARγ and changed expression of PPARγ-regulated genes. Using normoglycemic PPARγ+/- mice we demonstrated that reduced expression of PPARγ does not influence neovascularization either in wound healing or in hind limb ischemia models.ConclusionsIn summary, activation of PPARγ by rosiglitazone improves angiogenic potential of diabetic ECs and PACs, but decreased expression of PPARγ in diabetes does not impair angiogenesis.


Yeast | 2007

Expression of murine DNA methyltransferases Dnmt1 and Dnmt3a in the yeast Saccharomyces cerevisiae

Urszula Bulkowska; Takao Ishikawa; Anna Kurlandzka; Joanna Trzcinska-Danielewicz; Rafal Derlacz; Jan Fronk

Murine DNA methyltransferases Dnmt1 and Dnmt3a were expressed in the yeast Saccharomyces cerevisiae. Adjustment to yeast preferences of the nucleotide sequences upstream and downstream of the translation initiation sites of both cDNAs was needed to obtain significant levels of the methyltransferases. Both proteins were correctly localized to the nucleus and their presence had no measurable influence on the functioning of yeast cells. Both Dnmt1 and Dnmt3a expressed in yeast cells were enzymatically active in vitro, and in vivo in the genomic DNA of the transgenic S. cerevisiae ca. 0.06% and 0.4%, respectively, of cytosines became methylated. This level of DNA methylation is about 100‐ to 10‐fold less than that observed in mammalian cells. The constructed system may be used to investigate the in vivo specificity of individual mammalian DNA methyltransferases and to search for additional factors needed to allow more efficient in vivo methylation of chromatin‐contained DNA and to study their mechanism of action. Copyright


Stem Cell Research & Therapy | 2015

Myoblast-conditioned media improve regeneration and revascularization of ischemic muscles in diabetic mice.

Magdalena Kozakowska; Jerzy Kotlinowski; Anna Grochot-Przeczek; Maciej Ciesla; Bartosz Pilecki; Rafal Derlacz; Jozef Dulak; Alicja Jozkowicz

IntroductionDiabetes is associated with reduced expression of heme oxygenase-1 (HO-1), a heme-degrading enzyme with cytoprotective and proangiogenic properties. In myoblasts and muscle satellite cells HO-1 improves survival, proliferation and production of proangiogenic growth factors. Induction of HO-1 in injured tissues facilitates neovascularization, the process impaired in diabetes. We aimed to examine whether conditioned media from the HO-1 overexpressing myoblast cell line can improve a blood-flow recovery in ischemic muscles of diabetic mice.MethodsAnalysis of myogenic markers was performed at the mRNA level in primary muscle satellite cells, isolated by a pre-plate technique from diabetic db/db and normoglycemic wild-type mice, and then cultured under growth or differentiation conditions. Hind limb ischemia was performed by femoral artery ligation in db/db mice and blood recovery was monitored by laser Doppler measurements. Mice were treated with a single intramuscular injection of conditioned media harvested from wild-type C2C12 myoblast cell line, C2C12 cells stably transduced with HO-1 cDNA, or with unconditioned media.ResultsExpression of HO-1 was lower in muscle satellite cells isolated from muscles of diabetic db/db mice when compared to their wild-type counterparts, what was accompanied by increased levels of Myf5 or CXCR4, and decreased Mef2 or Pax7. Such cells also displayed diminished differentiation potential when cultured in vitro, as shown by less effective formation of myotubes and reduced expression of myogenic markers (myogenic differentiation antigen - myoD, myogenin and myosin). Blood flow recovery after induction of severe hind limb ischemia was delayed in db/db mice compared to that in normoglycemic individuals. To improve muscle regeneration after ischemia, conditioned media collected from differentiating C2C12 cells (control and HO-1 overexpressing) were injected into hind limbs of diabetic mice. Analysis of blood flow revealed that media from HO-1 overexpressing cells accelerated blood-flow recovery, while immunohistochemical staining assessment of vessel density in injected muscle confirmed increased angiogenesis. The effect might be mediated by stromal-cell derived factor-1α proangiogenic factor, as its secretion is elevated in HO-1 overexpressing cells.ConclusionsIn conclusion, paracrine stimulation of angiogenesis in ischemic skeletal muscle using conditioned media may be a safe approach exploiting protective and proangiogenic properties of HO-1 in diabetes.


Biochemistry and Cell Biology | 2014

Proinsulin C-peptide potentiates the inhibitory action of insulin on glucose synthesis in primary cultured rabbit kidney-cortex tubules: metabolic studies.

Michal Usarek; Adam K. Jagielski; Paulina Krempa; Anna Dylewska; Anna Kiersztan; Jakub Drozak; Agnieszka Girstun; Rafal Derlacz; Jadwiga Bryla

Effects of equimolar concentrations of proinsulin C-peptide and insulin on glucose synthesis were studied in primary cultures of rabbit kidney-cortex tubules grown in the presence of alanine, glycerol, and octanoate. The rhodamine-labeled C-peptide entered renal tubular cells and localized in nuclei, both in the presence and absence of insulin; preincubations with the unlabeled compound inhibited internalization. C-peptide did not affect glucose formation when added alone but potentiated the inhibitory action of insulin by about 20% due to a decrease in flux through glucose-6-phosphate isomerase (GPI) and (or) glucose-6-phosphatase (G6Pase). GPI inhibition was caused by: (i) increased intracellular contents of fructose-1,6-bisphosphate and fructose-1-phosphate, inhibitors of the enzyme and (ii) reduced level of the phosphorylated GPI, which exhibits higher enzymatic activity in the presence of casein kinase 2. A decrease in flux through G6Pase, due to diminished import of G6P by G6P-transporter from the cytoplasm into endoplasmic reticulum lumen, is also suggested. The data show for the first time that in the presence of insulin and C-peptide, both GPI and G6P-ase may act as regulatory enzymes of renal gluconeogenic pathway.


Journal of Inorganic Biochemistry | 2007

Differential effects of selenium compounds on glucose synthesis in rabbit kidney-cortex tubules and hepatocytes. In vitro and in vivo studies

Anna Kiersztan; Izabela Lukasinska; Anna Baranska; Magdalena Lebiedzinska; Andrzej Nagalski; Rafal Derlacz; Jadwiga Bryla

Collaboration


Dive into the Rafal Derlacz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jozef Dulak

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge