Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam K. Leroy is active.

Publication


Featured researches published by Adam K. Leroy.


The Astronomical Journal | 2008

THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY

Adam K. Leroy; Fabian Walter; Elias Brinks; Frank Bigiel; W. J. G. de Blok; Barry F. Madore; Michele D. Thornley

We measure the star formation efficiency (SFE), the star formation rate (SFR) per unit of gas, in 23 nearby galaxies and compare it with expectations from proposed star formation laws and thresholds. We use H I maps from The H I Nearby Galaxy Survey (THINGS) and derive H2 maps of CO measured by HERA CO-Line Extragalactic Survey and Berkeley-Illinois-Maryland Association Survey of Nearby Galaxies. We estimate the SFR by combining Galaxy Evolution Explorer (GALEX) far-ultraviolet maps and the Spitzer Infrared Nearby Galaxies Survey (SINGS) 24 ?m maps, infer stellar surface density profiles from SINGS 3.6 ?m data, and use kinematics from THINGS. We measure the SFE as a function of the free fall and orbital timescales, midplane gas pressure, stability of the gas disk to collapse (including the effects of stars), the ability of perturbations to grow despite shear, and the ability of a cold phase to form. In spirals, the SFE of H2 alone is nearly constant at (5.25 ? 2.5) ? 10?10 yr?1 (equivalent to an H2 depletion time of 1.9 ? 109 yr) as a function of all of these variables at our 800 pc resolution. Where the interstellar medium (ISM) is mostly H I, however, the SFE decreases with increasing radius in both spiral and dwarf galaxies, a decline reasonably described by an exponential with scale length 0.2r 25-0.25r 25. We interpret this decline as a strong dependence of giant molecular cloud (GMC) formation on environment. The ratio of molecular-to-atomic gas appears to be a smooth function of radius, stellar surface density, and pressure spanning from the H2-dominated to H I-dominated ISM. The radial decline in SFE is too steep to be reproduced only by increases in the free-fall time or orbital time. Thresholds for large-scale instability suggest that our disks are stable or marginally stable and do not show a clear link to the declining SFE. We suggest that ISM physics below the scales that we observe?phase balance in the H I, H2 formation and destruction, and stellar feedback?governs the formation of GMCs from H I.


The Astronomical Journal | 2008

The star formation law in nearby galaxies on sub-kpc scales

Frank Bigiel; Adam K. Leroy; Fabian Walter; Elias Brinks; W. J. G. de Blok; Barry F. Madore; Michele D. Thornley

We present a comprehensive analysis of the relationship between star formation rate surface density, ΣSFR, and gas surface density, Σgas, at sub-kpc resolution in a sample of 18 nearby galaxies. We use high-resolution H I data from The H I Nearby Galaxy Survey, CO data from HERACLES and the BIMA Survey of Nearby Galaxies, 24 μm data from the Spitzer Space Telescope, and UV data from the Galaxy Evolution Explorer. We target seven spiral galaxies and 11 late-type/dwarf galaxies and investigate how the star formation law differs between the H2 dominated centers of spiral galaxies, their H I dominated outskirts and the H I rich late-type/dwarf galaxies. We find that a Schmidt-type power law with index N = 1.0 ± 0.2 relates ΣSFR and ΣH2 across our sample of spiral galaxies, i.e., that H2 forms stars at a constant efficiency in spirals. The average molecular gas depletion time is ~2 × 109 years. The range of ΣH2 over which we measure this relation is ~3-50 M ☉ pc–2, significantly lower than in starburst environments. We find the same results when performing a pixel-by-pixel analysis, averaging in radial bins, or when varying the star formation tracer used. We interpret the linear relation and constant depletion time as evidence that stars are forming in giant molecular clouds with approximately uniform properties and that ΣH2 may be more a measure of the filling fraction of giant molecular clouds than changing conditions in the molecular gas. The relationship between total gas surface density (Σgas) and ΣSFR varies dramatically among and within spiral galaxies. Most galaxies show little or no correlation between ΣHI and ΣSFR. As a result, the star formation efficiency (SFE), ΣSFR/Σgas, varies strongly across our sample and within individual galaxies. We show that this variation is systematic and consistent with the SFE being set by local environmental factors: in spirals the SFE is a clear function of radius, while the dwarf galaxies in our sample display SFEs similar to those found in the outer optical disks of the spirals. We attribute the similarity to common environments (low density, low metallicity, H I dominated) and argue that shear (which is typically absent in dwarfs) cannot drive the SFE. In addition to a molecular Schmidt law, the other general feature of our sample is a sharp saturation of H I surface densities at ΣHI ≈ 9 M ☉ pc–2 in both the spiral and dwarf galaxies. In the case of the spirals, we observe gas in excess of this limit to be molecular.


Annual Review of Astronomy and Astrophysics | 2013

The CO-to-H2 Conversion Factor

Alberto D. Bolatto; Mark G. Wolfire; Adam K. Leroy

CO line emission represents the most accessible and widely used tracer of the molecular interstellar medium. This renders the translation of observed CO intensity into total H2 gas mass critical to understand star formation and the interstellar medium in our Galaxy and beyond. We review the theoretical underpinning, techniques, and results of efforts to estimate this CO-to-H2 “conversion factor,” XCO, in different environments. In the Milky Way disk, we recommend a conversion factor XCO = 2×10 20 cm −2 (K km s −1 ) −1 with ±30% uncertainty. Studies of other “normal galaxies” return similar values in Milky Way-like disks, but with greater scatter and systematic uncertainty. Departures from this Galactic conversion factor are both observed and expected. Dust-based determinations, theoretical arguments, and scaling relations all suggest that XCO increases with decreasing metallicity, turning up sharply below metallicity ≈ 1/3–1/2 solar in a manner consistent with model predictions that identify shielding as a key parameter. Based on spectral line modeling and dust observations, XCO appears to drop in the central, bright regions of some but not all galaxies, often coincident with regions of bright CO emission and high stellar surface density. This lower XCO is also present in the overwhelmingly molecular interstellar medium of starburst galaxies, where several lines of evidence point to a lower CO-to-H2 conversion factor. At high redshift, direct evidence regarding the conversion factor remains scarce; we review what is known based on dynamical modeling and other arguments. Subject headings: ISM: general — ISM: molecules — galaxies: ISM — radio lines: ISM


The Astronomical Journal | 2009

Heracles: The HERA CO Line Extragalactic Survey

Adam K. Leroy; Fabian Walter; Frank Bigiel; A. Usero; A. Weiss; Elias Brinks; W. J. G. de Blok; Robert C. Kennicutt; Karl-Friedrich Schuster; C. Kramer; Helmut Wiesemeyer; Helene Roussel

Original article can be found at: http://www.iop.org/EJ/journal/1538-3881 Copyright American Astronomical Society. DOI: 10.1088/0004-6256/137/6/4670 [Full text of this article is not available in the UHRA]


The Astrophysical Journal | 2013

The CO-to-H2 Conversion Factor and Dust-to-gas Ratio on Kiloparsec Scales in Nearby Galaxies

Karin Sandstrom; Adam K. Leroy; F. Walter; Alberto D. Bolatto; K. V. Croxall; B. T. Draine; C. D. Wilson; Mark G. Wolfire; D. Calzetti; Robert C. Kennicutt; G. Aniano; J. Donovan Meyer; A. Usero; Frank Bigiel; Elias Brinks; W. J. G. de Blok; Alison F. Crocker; Daniel A. Dale; C. W. Engelbracht; M. Galametz; Brent Groves; L. K. Hunt; Jin Koda; K. Kreckel; H. Linz; Sharon E. Meidt; E. Pellegrini; Hans-Walter Rix; H. Roussel; E. Schinnerer

We present ~kiloparsec spatial resolution maps of the CO-to-H_2 conversion factor (α_(CO)) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α_(CO) and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both αCO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, ^(12)CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α_(CO) results on the more typically used ^(12)CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α_(CO) and the DGR. On average, α_(CO) = 3.1 M_☉ pc^(–2) (K km s^(–1))^(–1) for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α_(CO) as a function of galactocentric radius. However, most galaxies exhibit a lower α_(CO) value in the central kiloparsec—a factor of ~2 below the galaxy mean, on average. In some cases, the central α_(CO) value can be factors of 5-10 below the standard Milky Way (MW) value of α_(CO,MW) = 4.4 M_☉ pc^(–2) (K km s^(–1))^(–1). While for α_(CO) we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α_(CO) for studies of nearby galaxies.


The Astrophysical Journal | 2005

High-resolution measurements of the halos of four dark matter-dominated galaxies: Deviations from a universal density profile

Joshua D. Simon; Alberto D. Bolatto; Adam K. Leroy; Leo Blitz; Elinor L. Gates

We derive rotation curves for four nearby, low-mass spiral galaxies and use them to constrain the shapes of their dark matter density profiles. This analysis is based on high-resolution two-dimensional Hα velocity fields of NGC 4605, NGC 5949, NGC 5963, and NGC 6689 and CO velocity fields of NGC 4605 and NGC 5963. In combination with our previous study of NGC 2976, the full sample of five galaxies contains density profiles that span the range from αDM = 0 to αDM = 1.20, where αDM is the power-law index describing the central density profile. The scatter in αDM from galaxy to galaxy is 0.44, 3 times as large as in cold dark matter (CDM) simulations, and the mean density profile slope is αDM = 0.73, shallower than that predicted by the simulations. These results call into question the hypothesis that all galaxies share a universal dark matter density profile. We show that one of the galaxies in our sample, NGC 5963, has a cuspy density profile that closely resembles those seen in CDM simulations, demonstrating that while galaxies with the steep central density cusps predicted by CDM do exist, they are in the minority. In spite of these differences between observations and simulations, the relatively cuspy density profiles we find do not suggest that this problem represents a crisis for CDM. Improving the resolution of the simulations and incorporating additional physics may resolve the remaining discrepancies. We also find that four of the galaxies contain detectable radial motions in the plane of the galaxy. We investigate the hypothesis that these motions are caused by a triaxial dark matter halo and place lower limits on the ellipticity of the orbits in the plane of the disk of 0.043-0.175.


The Astronomical Journal | 2010

EXTREMELY INEFFICIENT STAR FORMATION IN THE OUTER DISKS OF NEARBY GALAXIES

Frank Bigiel; Adam K. Leroy; Frederick M. Walter; L. Blitz; Elias Brinks; W. J. G. de Blok; Barry F. Madore

We combine data from The Hi Nearby Galaxy Survey and the GALEX Nearby Galaxy Survey to study the relationship between atomic hydrogen (Hi) and far-ultraviolet (FUV) emission outside the optical radius (r25 )i n 17 spiral and 5 dwarf galaxies. In this regime, Hi is likely to represent most of the interstellar medium (ISM) and FUV emission to trace recent star formation with little bias due to extinction, so that the two quantities closely trace the underlying relationship between gas and star formation rate (SFR). The azimuthally averaged Hi and FUV intensities both decline with increasing radius in this regime, with the scale length of the FUV profile typically half that of the Hi profile. Despite the mismatch in profiles, there is a significant spatial correlation (at 15 �� resolution) between local FUV and Hi intensities; near r25 this correlation is quite strong, in fact stronger than anywhere inside r25 (where Hi is not a good tracer for the bulk of the ISM), and shows a decline toward larger radii. The star formation efficiency (SFE)—defined as the ratio of FUV/Hi and thus the inverse of the gas depletion time—decreases with galactocentric radius across the outer disks, though much shallower than across the optical disks. On average, we find the gas depletion times to be well above a Hubble time (∼10 11 yr). We observe a clear relationship between FUV/Hi and Hi column in the outer disks, with the SFE increasing with increasing Hi column. Despite observing systematic variations in FUV/Hi, we find no clear evidence for stepfunction-type star formation thresholds, though we emphasize that it may not be realistic to expect them. When compared with results from insider25, we find outer disk star formation to be distinct in several ways: it is extremely inefficient (depletion times of many Hubble times which are also long compared to either the free fall or orbital timescale) with column densities and SFRs lower than found anywhere inside the optical disks. It appears that the Hi column is one of the key environmental factors—perhaps the key factor—in setting the SFR in outer galaxy disks.


Publications of the Astronomical Society of the Pacific | 2011

KINGFISH—Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel: Survey Description and Image Atlas

Robert C. Kennicutt; D. Calzetti; G. Aniano; P. N. Appleton; Lee Armus; P. Beirão; Alberto D. Bolatto; Bernhard R. Brandl; Alison F. Crocker; K. V. Croxall; Daniel A. Dale; J. Dononvan Meyer; B. T. Draine; C. W. Engelbracht; M. Galametz; Karl D. Gordon; Brent Groves; Cai-Na Hao; G. Helou; Joannah L. Hinz; L. K. Hunt; Barbara Johnson; Jin Koda; Oliver Krause; Adam K. Leroy; Yuejin Li; Sharon E. Meidt; Edward Montiel; E. J. Murphy; Nurur Rahman

The KINGFISH project (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel) is an imaging and spectroscopic survey of 61 nearby (d < 30 Mpc) galaxies, chosen to cover a wide range of galaxy properties and local interstellar medium (ISM) environments found in the nearby universe. Its broad goals are to characterize the ISM of present-day galaxies, the heating and cooling of their gaseous and dust components, and to better understand the physical processes linking star formation and the ISM. KINGFISH is a direct descendant of the Spitzer Infrared Nearby Galaxies Survey (SINGS), which produced complete Spitzer imaging and spectroscopic mapping and a comprehensive set of multiwavelength ancillary observations for the sample. The Herschel imaging consists of complete maps for the galaxies at 70, 100, 160, 250, 350, and 500 μm. The spectral line imaging of the principal atomic ISM cooling lines ([O I] 63 μm, [O III] 88 μm, [N II] 122,205 μm, and [C II] 158 μm) covers the subregions in the centers and disks that already have been mapped in the mid-infrared with Spitzer. The KINGFISH and SINGS multiwavelength data sets combined provide panchromatic mapping of the galaxies sufficient to resolve individual star-forming regions, and tracing the important heating and cooling channels of the ISM, across a wide range of local extragalactic ISM environments. This article summarizes the scientific strategy for KINGFISH, the properties of the galaxy sample, the observing strategy, and data processing and products. It also presents a combined Spitzer and Herschel image atlas for the KINGFISH galaxies, covering the wavelength range 3.6–500 μm. All imaging and spectroscopy data products will be released to the Herschel user-generated product archives.


The Astrophysical Journal | 2010

Regulation of Star Formation Rates in Multiphase Galactic Disks: A Thermal/Dynamical Equilibrium Model

Eve C. Ostriker; Christopher F. McKee; Adam K. Leroy

We develop a model for the regulation of galactic star formation rates ΣSFR in disk galaxies, in which interstellar medium (ISM) heating by stellar UV plays a key role. By requiring that thermal and (vertical) dynamical equilibrium are simultaneously satisfied within the diffuse gas, and that stars form at a rate proportional to the mass of the self-gravitating component, we obtain a prediction for ΣSFR as a function of the total gaseous surface density Σ and the midplane density of stars+dark matter ρsd. The physical basis of this relationship is that the thermal pressure in the diffuse ISM, which is proportional to the UV heating rate and therefore to ΣSFR, must adjust until it matches the midplane pressure value set by the vertical gravitational field. Our model applies to regions where Σ 100 M ☉ pc–2. In low-ΣSFR (outer-galaxy) regions where diffuse gas dominates, the theory predicts that . The decrease of thermal equilibrium pressure when ΣSFR is low implies, consistent with observations, that star formation can extend (with declining efficiency) to large radii in galaxies, rather than having a sharp cutoff at a fixed value of Σ. The main parameters entering our model are the ratio of thermal pressure to total pressure in the diffuse ISM, the fraction of diffuse gas that is in the warm phase, and the star formation timescale in self-gravitating clouds; all of these are (at least in principle) direct observables. At low surface density, our model depends on the ratio of the mean midplane FUV intensity (or thermal pressure in the diffuse gas) to the star formation rate, which we set based on solar-neighborhood values. We compare our results to recent observations, showing good agreement overall for azimuthally averaged data in a set of spiral galaxies. For the large flocculent spiral galaxies NGC 7331 and NGC 5055, the correspondence between theory and observation is remarkably close.


The Astrophysical Journal | 2012

HERSCHEL FAR-INFRARED AND SUBMILLIMETER PHOTOMETRY FOR THE KINGFISH SAMPLE OF NEARBY GALAXIES

Daniel A. Dale; G. Aniano; C. W. Engelbracht; Joannah L. Hinz; O. Krause; Edward Montiel; H. Roussel; P. N. Appleton; Lee Armus; P. Beirão; Alberto D. Bolatto; Bernhard R. Brandl; Daniela Calzetti; Alison F. Crocker; K. F. Croxall; B. T. Draine; M. Galametz; Karl D. Gordon; Brent Groves; Cai-Na Hao; G. Helou; L. K. Hunt; Benjamin D. Johnson; Robert C. Kennicutt; Jin Koda; Adam K. Leroy; Yiming Li; Sharon E. Meidt; A. E. Miller; E. J. Murphy

New far-infrared and submillimeter photometry from the Herschel Space Observatory is presented for 61 nearby galaxies from the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH) sample. The spatially integrated fluxes are largely consistent with expectations based on Spitzer far-infrared photometry and extrapolations to longer wavelengths using popular dust emission models. Dwarf irregular galaxies are notable exceptions, as already noted by other authors, as their 500 μm emission shows evidence for a submillimeter excess. In addition, the fraction of dust heating attributed to intense radiation fields associated with photodissociation regions is found to be (21 ± 4)% larger when Herschel data are included in the analysis. Dust masses obtained from the dust emission models of Draine & Li are found to be on average nearly a factor of two higher than those based on single-temperature modified blackbodies, as single blackbody curves do not capture the full range of dust temperatures inherent to any galaxy. The discrepancy is largest for galaxies exhibiting the coolest far-infrared colors.

Collaboration


Dive into the Adam K. Leroy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabian Walter

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Rosolowsky

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Usero

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge