Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam M. Boies is active.

Publication


Featured researches published by Adam M. Boies.


Energy and Environmental Science | 2014

Lifecycle greenhouse gas footprint and minimum selling price of renewable diesel and jet fuel from fermentation and advanced fermentation production technologies

Mark D. Staples; Robert Malina; Hakan Olcay; Matthew N. Pearlson; James I. Hileman; Adam M. Boies; Steven R.H. Barrett

Fermentation and advanced fermentation (AF) biofuel production technologies may offer a means to reduce the greenhouse gas (GHG) intensity of transportation by providing renewable drop-in alternatives to conventional middle distillate (MD) fuels, including diesel and jet fuel. To the best of our knowledge, this is the first peer-reviewed study of the environmental and economic feasibility of AF technologies. We find that the attributional lifecycle GHG footprint of AF MD from sugar cane, corn grain and switchgrass ranges from −27.0 to 19.7, 47.5 to 117.5, and 11.7 to 89.8 gCO2e/MJMD, respectively, compared to 90.0 gCO2e/MJMD for conventional MD. These results are most sensitive to the co-product allocation method used, the efficiency and utility requirements of feedstock-to-fuel conversion, and the co-generation technology employed. We also calculate the minimum selling price (MSP) of MD fuel produced from sugar cane, corn grain and switchgrass AF as a range from 0.61 to 2.63, 0.84 to 3.65, and 1.09 to 6.30


Nanotechnology | 2009

SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition

Adam M. Boies; Jeffrey T. Roberts; Steven L. Girshick; Bin Zhang; Toshitaka Nakamura; Amane Mochizuki

per literMD, respectively, compared to the current price of conventional MD in the United States of approximately 0.80


Environmental Science & Technology | 2013

Global Civil Aviation Black Carbon Emissions

Marc E.J. Stettler; Adam M. Boies; Andreas Petzold; Steven R.H. Barrett

per literMD. The MSP results are most sensitive to feedstock-to-fuel conversion efficiency, feedstock costs, and capital costs. Finally, we demonstrate that emissions from land use change (LUC) directly attributable to the growth of biomass for AF fuel could dominate the GHG footprint of AF MD fuels.


Environmental Science & Technology | 2013

Effects of ethanol on vehicle energy efficiency and implications on ethanol life-cycle greenhouse gas analysis.

Xiaoyu Yan; Oliver R. Inderwildi; David A. King; Adam M. Boies

Gas-phase silver nanoparticles were coated with silicon dioxide (SiO2) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 degrees C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10(7) particles cm(-3).


Journal of Propulsion and Power | 2015

Effective density and mass-mobility exponent of aircraft turbine particulate matter

Tyler J. Johnson; Jason S. Olfert; John P.R. Symonds; Mark P. Johnson; Theo Rindlisbacher; Jacob Swanson; Adam M. Boies; Kevin A. Thomson; Greg Smallwood; David Walters; Yura Alexander Sevcenco; Andrew Philip Crayford; Ramin Dastanpour; Steven N. Rogak; Lukas Durdina; Yeon Kyoung Bahk; Benjamin T. Brem; Jing Wang

Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.


Environmental Science & Technology | 2009

Reducing motor vehicle greenhouse gas emissions in a non-California state: a case study of Minnesota.

Adam M. Boies; Steve Hankey; David B. Kittelson; Julian D. Marshall; Peter Nussbaum; Winthrop F. Watts; Elizabeth J. Wilson

Bioethanol is the worlds largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.


Aerosol Science and Technology | 2016

Methodology for quantifying the volatile mixing state of an aerosol

Matthew Dickau; Jason S. Olfert; Marc E.J. Stettler; Adam M. Boies; Ali Momenimovahed; Kevin A. Thomson; Greg Smallwood; Mark P. Johnson

A centrifugal particle mass analyzer and a modified differential mobility spectrometer were used to measure the mass and mobility of particulate matter emitted by CFM56-5B4/2P, CFM56-7B26/3, and PW4000-100 gas turbine engine sources. The mass-mobility exponent of the particulate matter from the CFM56-5B4/2P engine ranged from 2.68 to 2.82, whereas the effective particle densities varied from 600 to 1250  kg/m3, depending on the static engine thrust and sampling methodology used. The effective particle densities from the CFM56-7B26/3 and PW4000-100 engines also fell within this range. The sample was conditioned with or without a catalytic stripper and with or without dilution, which caused the effective density to change, indicating the presence of condensed semivolatile material on the particles. Variability of the determined effective densities across different engine thrusts, based on the scattering about the line of best fit, was lowest for the diluted samples and highest for the undiluted sample without a catalytic stripper. This variability indicates that the relative amount of semivolatile material produced was engine thrust dependent. It was found that the nonvolatile particulate matter, effective particle density (in kilograms per cubic meter) of the CFM56-5B4/2P engine at relative thrusts below 30% could be approximated using the particle mobility diameter (dme in meters) with 11.92d(2.76−3)me.


Aerosol Science and Technology | 2013

Updated correlation between aircraft smoke number and black carbon concentration

Marc E.J. Stettler; Jacob Swanson; Steven R.H. Barrett; Adam M. Boies

Approaches for reducing greenhouse gas (GHG) emissions from motor vehicles include more-efficient vehicles, lower-carbon fuels, and reducing vehicle-kilometers traveled (VKT). Many U.S. states are considering steps to reduce emissions through actions in one or more of these areas. We model several technology and policy options for reducing GHGs from motor vehicles in Minnesota. Considerable analysis of transportation GHGs has been done for California, which has a large population and vehicle fleet and can enact unique emissions regulations; Minnesota represents a more typical state with respect to many demographic and transportation parameters. We conclude that Minnesota has a viable approach to meeting its stated GHG reduction targets (15% by 2015 and 30% by 2025, relative to year 2005) only if advancements are made in all three areas-vehicle efficiency, carbon content of fuels, and VKT. If policies focus on only one or two areas, potential improvements may be negated by backsliding in another area (e.g., increasing VKT offsetting improvements in vehicle efficiency).


Environmental Research Letters | 2013

Quantifying the uncertainties in life cycle greenhouse gas emissions for UK wheat ethanol

Xiaoyu Yan; Adam M. Boies

ABSTRACT Mixing state refers to the relative proportions of chemical species in an aerosol, and the way these species are combined; either as a population where each particle consists of a single species (‘externally mixed’) or where all particles individually consist of two or more species (‘internally mixed’) or the case where some particles are pure and some particles consist of multiple species. The mixing state affects optical and hygroscopic properties, and quantifying it is therefore important for studying an aerosols climate impact. In this article, we describe a method to quantify the volatile mixing state of an aerosol using a differential mobility analyzer, centrifugal particle mass analyzer, catalytic denuder, and condensation particle counter by measuring the mass distributions of the volatile and non-volatile components of an aerosol and determining how the material is mixed within and between particles as a function of mobility diameter. The method is demonstrated using two aerosol samples from a miniCAST soot generator, one with a high elemental carbon (EC) content, and one with a high organic carbon (OC) content. The measurements are presented in terms of the mass distribution of the volatile and non-volatile material, as well as measures of diversity and mixing state parameter. It was found that the high-EC soot nearly consisted of only pure particles where 86% of the total mass was non-volatile. The high-OC soot consisted of either pure volatile particles or particles that contained a mixture of volatile and non-volatile material where 8% of the total mass was pure volatile particles and 70% was non-volatile material (with the remaining 22% being volatile material condensed on non-volatile particles).


Nanotechnology | 2011

Gas-phase production of gold-decorated silica nanoparticles

Adam M. Boies; Pingyan Lei; Steven Calder; Steven L. Girshick

Aircraft emissions of black carbon (BC) contribute to anthropogenic climate forcing and degrade air quality. The smoke number (SN) is the current regulatory measure of aircraft particulate matter emissions and quantifies exhaust plume visibility. Several correlations between SN and the exhaust mass concentration of BC (C BC) have been developed, based on measurements relevant to older aircraft engines. These form the basis of the current standard method used to estimate aircraft BC emissions (First Order Approximation version 3 [FOA3]) for the purposes of environmental impact analyses. In this study, BC with a geometric mean diameter (GMD) of 20, 30, and 60 nm and filter diameters of 19 and 35 mm are used to investigate the effect of particle size and sampling variability on SN measurements. For BC with 20 and 30 nm GMD, corresponding to BC emitted by modern aircraft engines, a smaller SN results from a given C BC than is the case for BC with 60 nm GMD, which is more typical of older engines. An updated correlation between C BC and SN that accounts for typical size of BC emitted by modern aircraft is proposed. An uncertainty of ±25% accounts for variation in GMD in the range 20–30 nm and for the range of filter diameters. The SN–C BC correlation currently used in FOA3 underestimates by a factor of 2.5–3 for SN ≤15, implying that current estimates of aircraft BC emissions derived from SN are underestimated by the same factor. Copyright 2013 American Association for Aerosol Research

Collaboration


Dive into the Adam M. Boies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pingyan Lei

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge