Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc E.J. Stettler is active.

Publication


Featured researches published by Marc E.J. Stettler.


Environmental Science & Technology | 2013

Global Civil Aviation Black Carbon Emissions

Marc E.J. Stettler; Adam M. Boies; Andreas Petzold; Steven R.H. Barrett

Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.


Aerosol Science and Technology | 2016

Methodology for quantifying the volatile mixing state of an aerosol

Matthew Dickau; Jason S. Olfert; Marc E.J. Stettler; Adam M. Boies; Ali Momenimovahed; Kevin A. Thomson; Greg Smallwood; Mark P. Johnson

ABSTRACT Mixing state refers to the relative proportions of chemical species in an aerosol, and the way these species are combined; either as a population where each particle consists of a single species (‘externally mixed’) or where all particles individually consist of two or more species (‘internally mixed’) or the case where some particles are pure and some particles consist of multiple species. The mixing state affects optical and hygroscopic properties, and quantifying it is therefore important for studying an aerosols climate impact. In this article, we describe a method to quantify the volatile mixing state of an aerosol using a differential mobility analyzer, centrifugal particle mass analyzer, catalytic denuder, and condensation particle counter by measuring the mass distributions of the volatile and non-volatile components of an aerosol and determining how the material is mixed within and between particles as a function of mobility diameter. The method is demonstrated using two aerosol samples from a miniCAST soot generator, one with a high elemental carbon (EC) content, and one with a high organic carbon (OC) content. The measurements are presented in terms of the mass distribution of the volatile and non-volatile material, as well as measures of diversity and mixing state parameter. It was found that the high-EC soot nearly consisted of only pure particles where 86% of the total mass was non-volatile. The high-OC soot consisted of either pure volatile particles or particles that contained a mixture of volatile and non-volatile material where 8% of the total mass was pure volatile particles and 70% was non-volatile material (with the remaining 22% being volatile material condensed on non-volatile particles).


Aerosol Science and Technology | 2013

Updated correlation between aircraft smoke number and black carbon concentration

Marc E.J. Stettler; Jacob Swanson; Steven R.H. Barrett; Adam M. Boies

Aircraft emissions of black carbon (BC) contribute to anthropogenic climate forcing and degrade air quality. The smoke number (SN) is the current regulatory measure of aircraft particulate matter emissions and quantifies exhaust plume visibility. Several correlations between SN and the exhaust mass concentration of BC (C BC) have been developed, based on measurements relevant to older aircraft engines. These form the basis of the current standard method used to estimate aircraft BC emissions (First Order Approximation version 3 [FOA3]) for the purposes of environmental impact analyses. In this study, BC with a geometric mean diameter (GMD) of 20, 30, and 60 nm and filter diameters of 19 and 35 mm are used to investigate the effect of particle size and sampling variability on SN measurements. For BC with 20 and 30 nm GMD, corresponding to BC emitted by modern aircraft engines, a smaller SN results from a given C BC than is the case for BC with 60 nm GMD, which is more typical of older engines. An updated correlation between C BC and SN that accounts for typical size of BC emitted by modern aircraft is proposed. An uncertainty of ±25% accounts for variation in GMD in the range 20–30 nm and for the range of filter diameters. The SN–C BC correlation currently used in FOA3 underestimates by a factor of 2.5–3 for SN ≤15, implying that current estimates of aircraft BC emissions derived from SN are underestimated by the same factor. Copyright 2013 American Association for Aerosol Research


Aerosol Science and Technology | 2015

Particle Emission Characteristics of a Gas Turbine with a Double Annular Combustor

Adam M. Boies; Marc E.J. Stettler; Jacob Swanson; Tyler J. Johnson; Jason S. Olfert; Mark P. Johnson; Max L. Eggersdorfer; Theo Rindlisbacher; Jing Wang; Kevin A. Thomson; Greg Smallwood; Yura Alexander Sevcenco; David Walters; P. I. Williams; Joel C. Corbin; A. A. Mensah; Jonathan P.R. Symonds; Ramin Dastanpour; Steven N. Rogak

The total climate, air quality, and health impact of aircraft black carbon (BC) emissions depend on quantity (mass and number concentration) as well as morphology (fractal dimension and surface area) of emitted BC aggregates. This study examines multiple BC emission metrics from a gas turbine with a double annular combustor, CFM56-5B4-2P. As a part of the SAMPLE III.2 campaign, concurrent measurements of particle mobility, particle mass, particle number concentration, and mass concentration, as well as collection of transmission electron microscopy (TEM) samples, allowed for characterization of the BC emissions. Mass- and number-based emission indices were strongly influenced by thrust setting during pilot combustion and ranged from <1 to 208 mg/kg-fuel and 3 ×× 1012 to 3 ×× 1016 particles/kg-fuel, respectively. Mobility measurements indicated that mean diameters ranged from 7 to 44 nm with a strong dependence on thrust during pilot-only combustion. Using aggregation and sintering theory with empirical effective density relationships, a power-law relationship between primary particle diameter and mobility diameter is presented. Mean primary particle diameter ranged from 6 to 19 nm; however, laser-induced incandescence (LII) and mass-mobility-calculated primary particle diameters demonstrated opposite trends with thrust setting. Similarly, mass-mobility-calculated aggregate mass specific surface area and LII-measured surface area were not in agreement, indicating both methods need further development and validation before use as quantitative indicators of primary particle diameter and mass-specific surface area. Copyright 2015 American Association for Aerosol Research


Environmental Science & Technology | 2016

Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

Marc E.J. Stettler; William Jb Midgley; Jacob Swanson; David Cebon; Adam M. Boies

Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.


Science of The Total Environment | 2018

Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars.

Rosalind O'Driscoll; Marc E.J. Stettler; Nick Molden; Tim Oxley; Helen ApSimon

In this study CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars were compared using a Portable Emissions Measurement System (PEMS). The models sampled accounted for 56% of all passenger cars sold in Europe in 2016. We found gasoline vehicles had CO2 emissions 13-66% higher than diesel. During urban driving, the average CO2 emission factor was 210.5 (sd. 47) gkm-1 for gasoline and 170.2 (sd. 34) gkm-1 for diesel. Half the gasoline vehicles tested were Gasoline Direct Injection (GDI). Euro 6 GDI engines <1.4ℓ delivered ~17% CO2 reduction compared to Port Fuel Injection (PFI). Gasoline vehicles delivered an 86-96% reduction in NOx emissions compared to diesel cars. The average urban NOx emission from Euro 6 diesel vehicles 0.44 (sd. 0.44) gkm-1 was 11 times higher than for gasoline 0.04 (sd. 0.04) gkm-1. We also analysed two gasoline-electric hybrids which out-performed both gasoline and diesel for NOx and CO2. We conclude action is required to mitigate the public health risk created by excessive NOx emissions from modern diesel vehicles. Replacing diesel with gasoline would incur a substantial CO2 penalty, however greater uptake of hybrid vehicles would likely reduce both CO2 and NOx emissions. Discrimination of vehicles on the basis of Euro standard is arbitrary and incentives should promote vehicles with the lowest real-world emissions of both NOx and CO2.


international conference on conceptual structures | 2015

Economic, Climate Change, and Air Quality Analysis of Distributed Energy Resource Systems☆

Akomeno Omu; Adam Rysanek; Marc E.J. Stettler; Ruchi Choudhary

Abstract This paper presents an optimisation model and cost-benefit analysis framework for the quantification of the economic, climate change, and air quality impacts of the installation of a distributed energy resource system in the area surrounding Paddington train station in London, England. A mixed integer linear programming model, called the Distributed Energy Network Optimisation (DENO) model, is employed to design the optimal energy system for the district. DENO is then integrated into a cost-benefit analysis framework that determines the resulting monetised climate change and air quality impacts of the optimal energy systems for different technology scenarios in order to determine their overall economic and environmental impacts.


Aerosol Science and Technology | 2017

Effective density and volatility of particles sampled from a helicopter gas turbine engine

Jason S. Olfert; Matthew Dickau; Ali Momenimovahed; Meghdad Saffaripour; Kevin Thompson; Greg Smallwood; Marc E.J. Stettler; Adam M. Boies; Yura Alexander Sevcenco; Andrew Philip Crayford; Mark P. Johnson

ABSTRACT The effective density and size-resolved volatility of particles emitted from a Rolls-Royce Gnome helicopter turboshaft engine are measured at two engine speed settings (13,000 and 22,000 RPM). The effective density of denuded and undenuded particles was measured. The denuded effective densities are similar to the effective densities of particles from a gas turbine with a double annular combustor as well as a wide variety of internal combustion engines. The denuded effective density measurements were also used to estimate the size and number of primary particles in the soot aggregates. The primary particle size estimates show that the primary particle size was smaller at lower engine speed (in agreement with transmission electron microscopy analysis). As a demonstration, the size-resolved volatility of particles emitted from the engine is measured with a system consisting of a differential mobility analyzer, centrifugal particle mass analyzer, condensation particle counter, and catalytic stripper. This system determines the number distributions of particles that contain or do not contain non-volatile material, and the mass distributions of non-volatile material, volatile material condensed onto the surface of non-volatile particles, and volatile material forming independent particles (e.g., nucleated volatile material). It was found that the particulate at 13,000 RPM contained a measurable fraction of purely volatile material with diameters below ∼25 nm and had a higher mass fraction of volatile material condensed on the surface of the soot (6%–12%) compared to the 22,000 RPM condition (1%–5%). This study demonstrates the potential to quantify the distribution of volatile particulate matter and gives additional information to characterize sampling effects with regulatory measurement procedures. Copyright


Atmospheric Environment | 2011

Air quality and public health impacts of UK airports. Part I: Emissions

Marc E.J. Stettler; Sebastian D. Eastham; Steven R.H. Barrett


Atmospheric Environment | 2013

Air quality and public health impacts of UK airports. Part II: Impacts and policy assessment

Steve H.L. Yim; Marc E.J. Stettler; Steven R.H. Barrett

Collaboration


Dive into the Marc E.J. Stettler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven R.H. Barrett

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nick Molden

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Greg Smallwood

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Hu

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge