Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Mendizabal is active.

Publication


Featured researches published by Adam Mendizabal.


The Lancet | 2012

Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial

Raj Makkar; Rachel R. Smith; Ke Cheng; Konstantinos Malliaras; Louise Thomson; Daniel S. Berman; L. Czer; Linda Marbán; Adam Mendizabal; Peter V. Johnston; Stuart D. Russell; Karl H. Schuleri; Albert C. Lardo; Gary Gerstenblith; Eduardo Marbán

BACKGROUND Cardiosphere-derived cells (CDCs) reduce scarring after myocardial infarction, increase viable myocardium, and boost cardiac function in preclinical models. We aimed to assess safety of such an approach in patients with left ventricular dysfunction after myocardial infarction. METHODS In the prospective, randomised CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction (CADUCEUS) trial, we enrolled patients 2-4 weeks after myocardial infarction (with left ventricular ejection fraction of 25-45%) at two medical centres in the USA. An independent data coordinating centre randomly allocated patients in a 2:1 ratio to receive CDCs or standard care. For patients assigned to receive CDCs, autologous cells grown from endomyocardial biopsy specimens were infused into the infarct-related artery 1·5-3 months after myocardial infarction. The primary endpoint was proportion of patients at 6 months who died due to ventricular tachycardia, ventricular fibrillation, or sudden unexpected death, or had myocardial infarction after cell infusion, new cardiac tumour formation on MRI, or a major adverse cardiac event (MACE; composite of death and hospital admission for heart failure or non-fatal recurrent myocardial infarction). We also assessed preliminary efficacy endpoints on MRI by 6 months. Data analysers were masked to group assignment. This study is registered with ClinicalTrials.gov, NCT00893360. FINDINGS Between May 5, 2009, and Dec 16, 2010, we randomly allocated 31 eligible participants of whom 25 were included in a per-protocol analysis (17 to CDC group and eight to standard of care). Mean baseline left ventricular ejection fraction (LVEF) was 39% (SD 12) and scar occupied 24% (10) of left ventricular mass. Biopsy samples yielded prescribed cell doses within 36 days (SD 6). No complications were reported within 24 h of CDC infusion. By 6 months, no patients had died, developed cardiac tumours, or MACE in either group. Four patients (24%) in the CDC group had serious adverse events compared with one control (13%; p=1·00). Compared with controls at 6 months, MRI analysis of patients treated with CDCs showed reductions in scar mass (p=0·001), increases in viable heart mass (p=0·01) and regional contractility (p=0·02), and regional systolic wall thickening (p=0·015). However, changes in end-diastolic volume, end-systolic volume, and LVEF did not differ between groups by 6 months. INTERPRETATION We show intracoronary infusion of autologous CDCs after myocardial infarction is safe, warranting the expansion of such therapy to phase 2 study. The unprecedented increases we noted in viable myocardium, which are consistent with therapeutic regeneration, merit further assessment of clinical outcomes. FUNDING US National Heart, Lung and Blood Institute and Cedars-Sinai Board of Governors Heart Stem Cell Center.


JAMA | 2014

Transendocardial Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells for Ischemic Cardiomyopathy: The TAC-HFT Randomized Trial

Alan W. Heldman; Darcy L. DiFede; Joel E. Fishman; Juan P. Zambrano; Barry Trachtenberg; Vasileios Karantalis; Muzammil Mushtaq; Adam R. Williams; Viky Y. Suncion; Ian McNiece; Eduard Ghersin; Victor Soto; Gustavo Lopera; Roberto Miki; Howard J. Willens; Robert C. Hendel; Raul Mitrani; Pradip M. Pattany; Gary S. Feigenbaum; Behzad Oskouei; John J. Byrnes; Maureen H. Lowery; Julio Sierra; Mariesty V. Pujol; Cindy Delgado; Phillip J. Gonzalez; Jose E Rodriguez; Luiza Bagno; Didier Rouy; Peter Altman

IMPORTANCE Whether culture-expanded mesenchymal stem cells or whole bone marrow mononuclear cells are safe and effective in chronic ischemic cardiomyopathy is controversial. OBJECTIVE To demonstrate the safety of transendocardial stem cell injection with autologous mesenchymal stem cells (MSCs) and bone marrow mononuclear cells (BMCs) in patients with ischemic cardiomyopathy. DESIGN, SETTING, AND PATIENTS A phase 1 and 2 randomized, blinded, placebo-controlled study involving 65 patients with ischemic cardiomyopathy and left ventricular (LV) ejection fraction less than 50% (September 1, 2009-July 12, 2013). The study compared injection of MSCs (n=19) with placebo (n = 11) and BMCs (n = 19) with placebo (n = 10), with 1 year of follow-up. INTERVENTIONS Injections in 10 LV sites with an infusion catheter. MAIN OUTCOMES AND MEASURES Treatment-emergent 30-day serious adverse event rate defined as a composite of death, myocardial infarction, stroke, hospitalization for worsening heart failure, perforation, tamponade, or sustained ventricular arrhythmias. RESULTS No patient had a treatment-emergent serious adverse events at day 30. The 1-year incidence of serious adverse events was 31.6% (95% CI, 12.6% to 56.6%) for MSCs, 31.6% (95% CI, 12.6%-56.6%) for BMCs, and 38.1% (95% CI, 18.1%-61.6%) for placebo. Over 1 year, the Minnesota Living With Heart Failure score improved with MSCs (-6.3; 95% CI, -15.0 to 2.4; repeated measures of variance, P=.02) and with BMCs (-8.2; 95% CI, -17.4 to 0.97; P=.005) but not with placebo (0.4; 95% CI, -9.45 to 10.25; P=.38). The 6-minute walk distance increased with MSCs only (repeated measures model, P = .03). Infarct size as a percentage of LV mass was reduced by MSCs (-18.9%; 95% CI, -30.4 to -7.4; within-group, P = .004) but not by BMCs (-7.0%; 95% CI, -15.7% to 1.7%; within-group, P = .11) or placebo (-5.2%; 95% CI, -16.8% to 6.5%; within-group, P = .36). Regional myocardial function as peak Eulerian circumferential strain at the site of injection improved with MSCs (-4.9; 95% CI, -13.3 to 3.5; within-group repeated measures, P = .03) but not BMCs (-2.1; 95% CI, -5.5 to 1.3; P = .21) or placebo (-0.03; 95% CI, -1.9 to 1.9; P = .14). Left ventricular chamber volume and ejection fraction did not change. CONCLUSIONS AND RELEVANCE Transendocardial stem cell injection with MSCs or BMCs appeared to be safe for patients with chronic ischemic cardiomyopathy and LV dysfunction. Although the sample size and multiple comparisons preclude a definitive statement about safety and clinical effect, these results provide the basis for larger studies to provide definitive evidence about safety and to assess efficacy of this new therapeutic approach. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00768066.


Journal of the American College of Cardiology | 2014

Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction).

Konstantinos Malliaras; Raj Makkar; Rachel R. Smith; Ke Cheng; Edwin Wu; Robert O. Bonow; Linda Marbán; Adam Mendizabal; Eugenio Cingolani; Peter V. Johnston; Gary Gerstenblith; Karl H. Schuleri; Albert C. Lardo; Eduardo Marbán

OBJECTIVES This study sought to report full 1-year results, detailed magnetic resonance imaging analysis, and determinants of efficacy in the prospective, randomized, controlled CADUCEUS (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction) trial. BACKGROUND Cardiosphere-derived cells (CDCs) exerted regenerative effects at 6 months in the CADUCEUS trial. Complete results at the final 1-year endpoint are unknown. METHODS Autologous CDCs (12.5 to 25 × 10(6)) grown from endomyocardial biopsy specimens were infused via the intracoronary route in 17 patients with left ventricular dysfunction 1.5 to 3 months after myocardial infarction (MI) (plus 1 infused off-protocol 14 months post-MI). Eight patients were followed as routine-care control patients. RESULTS In 13.4 months of follow-up, safety endpoints were equivalent between groups. At 1 year, magnetic resonance imaging revealed that CDC-treated patients had smaller scar size compared with control patients. Scar mass decreased and viable mass increased in CDC-treated patients but not in control patients. The single patient infused 14 months post-MI responded similarly. CDC therapy led to improved regional function of infarcted segments compared with control patients. Scar shrinkage correlated with an increase in viability and with improvement in regional function. Scar reduction correlated with baseline scar size but not with a history of temporally remote MI or time from MI to infusion. The changes in left ventricular ejection fraction in CDC-treated subjects were consistent with the natural relationship between scar size and ejection fraction post-MI. CONCLUSIONS Intracoronary administration of autologous CDCs did not raise significant safety concerns. Preliminary indications of bioactivity include decreased scar size, increased viable myocardium, and improved regional function of infarcted myocardium at 1 year post-treatment. These results, which are consistent with therapeutic regeneration, merit further investigation in future trials. (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction [CADUCEUS]; NCT00893360).


Circulation Research | 2014

Autologous Mesenchymal Stem Cells Produce Concordant Improvements in Regional Function, Tissue Perfusion, and Fibrotic Burden When Administered to Patients Undergoing Coronary Artery Bypass Grafting The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) Trial

Vasileios Karantalis; Darcy L. DiFede; Gary Gerstenblith; Si M Pham; James F. Symes; Juan P. Zambrano; Joel E. Fishman; Pradip M. Pattany; Ian McNiece; John V. Conte; Steven P. Schulman; Katherine C. Wu; Ashish S. Shah; Elayne Breton; Janice Davis-Sproul; Richard Schwarz; Gary S. Feigenbaum; Muzammil Mushtaq; Viky Y. Suncion; Albert C. Lardo; Ivan Borrello; Adam Mendizabal; Tomer Z. Karas; John J. Byrnes; Maureen H. Lowery; Alan W. Heldman; Joshua M. Hare

Rationale: Although accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial. Mesenchymal stem cells (MSCs) improve LV structure and function through several effects including reducing fibrosis, neoangiogenesis, and neomyogenesis. Objective: To test the hypothesis that the impact on cardiac structure and function after intramyocardial injections of autologous MSCs results from a concordance of prorecovery phenotypic effects. Methods and Results: Six patients were injected with autologous MSCs into akinetic/hypokinetic myocardial territories not receiving bypass graft for clinical reasons. MRI was used to measure scar, perfusion, wall thickness, and contractility at baseline, at 3, 6, and 18 months and to compare structural and functional recovery in regions that received MSC injections alone, revascularization alone, or neither. A composite score of MRI variables was used to assess concordance of antifibrotic effects, perfusion, and contraction at different regions. After 18 months, subjects receiving MSCs exhibited increased LV ejection fraction (+9.4±1.7%, P=0.0002) and decreased scar mass (−47.5±8.1%; P<0.0001) compared with baseline. MSC-injected segments had concordant reduction in scar size, perfusion, and contractile improvement (concordant score: 2.93±0.07), whereas revascularized (0.5±0.21) and nontreated segments (−0.07±0.34) demonstrated nonconcordant changes (P<0.0001 versus injected segments). Conclusions: Intramyocardial injection of autologous MSCs into akinetic yet nonrevascularized segments produces comprehensive regional functional restitution, which in turn drives improvement in global LV function. These findings, although inconclusive because of lack of placebo group, have important therapeutic and mechanistic hypothesis-generating implications. Clinical Trial Registration: URL: http://clinicaltrials.gov/show/NCT00587990. Unique identifier: NCT00587990.


American Heart Journal | 2011

Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: A randomized, double-blind, placebo-controlled study of safety and efficacy

Barry Trachtenberg; Darcy L. Velazquez; Adam R. Williams; Ian McNiece; Joel E. Fishman; Kim Nguyen; Didier Rouy; Peter Altman; Richard Schwarz; Adam Mendizabal; Behzad Oskouei; John J. Byrnes; Victor Soto; Melissa Tracy; Juan P. Zambrano; Alan W. Heldman; Joshua M. Hare

Although there is tremendous interest in stem cell (SC)-based therapies for cardiomyopathy caused by chronic myocardial infarction, many unanswered questions regarding the best approach remain. The TAC-HFT study is a phase I/II randomized, double-blind, placebo-controlled trial designed to address several of these questions, including the optimal cell type, delivery technique, and population. This trial compares autologous mesenchymal SCs (MSCs) and whole bone marrow mononuclear cells (BMCs). In addition, the study will use a novel helical catheter to deliver cells transendocardially. Although most trials have used intracoronary delivery, the optimal method is unknown and data suggest that the transendocardial approach may have important advantages. Several trials support the benefit of SCs in patients with chronic ischemic cardiomyopathy (ICMP), although the sample sizes have been small and the number of trials sparse. After a pilot phase of 8 patients, 60 patients with ICMP (left ventricular ejection fraction 15%-50%) will be randomized to group A (30 patients further randomized to receive MSC injection or placebo in a 2:1 fashion) or group B (30 patients further randomized to BMCs or placebo in a 2:1 fashion). All patients will undergo bone marrow aspiration and transendocardial injection of SCs or placebo. The primary and secondary objectives are, respectively, to demonstrate the safety and efficacy (determined primarily by cardiac magnetic resonance imaging) of BMCs and MSCs administered transendocardially in patients with ICMP.


Circulation Research | 2014

Does Transendocardial Injection of Mesenchymal Stem Cells Improve Myocardial Function Locally or Globally? An Analysis From the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis (POSEIDON) Randomized Trial

Viky Y. Suncion; Eduard Ghersin; Joel E. Fishman; Juan P. Zambrano; Vasileios Karantalis; Nicole Mandel; Katarina Nelson; Gary Gerstenblith; Darcy L. Velazquez; Elayne Breton; Kranthi Sitammagari; Ivonne Hernandez Schulman; Sabrina N. Taldone; Adam R. Williams; Cristina Sanina; Peter V. Johnston; Jeffrey A. Brinker; Peter Altman; Muzammil Mushtaq; Barry Trachtenberg; Adam Mendizabal; Melissa Tracy; José Maria Cardoso da Silva; Ian McNiece; Alberto C. Lardo; Richard T. George; Joshua M. Hare; Alan W. Heldman

Rationale: Transendocardial stem cell injection (TESI) with mesenchymal stem cells improves remodeling in chronic ischemic cardiomyopathy, but the effect of the injection site remains unknown. Objective: To address whether TESI exerts its effects at the site of injection only or also in remote areas, we hypothesized that segmental myocardial scar and segmental ejection fraction improve to a greater extent in injected than in noninjected segments. Methods and Results: Biplane ventriculographic and endocardial tracings were recorded. TESI was guided to 10 sites in infarct-border zones. Sites were mapped according to the 17-myocardial segment model. As a result, 510 segments were analyzed in 30 patients before and 13 months after TESI. Segmental early enhancement defect (a measure of scar size) was reduced by TESI in both injected (−43.7±4.4%; n=95; P<0.01) and noninjected segments (−25.1±7.8%; n=148; P<0.001; between-group comparison P<0.05). Conversely, segmental ejection fraction (a measure of contractile performance) improved in injected scar segments (19.9±3.3–26.3±3.5%; P=0.003) but not in noninjected scar segments (21.3±2.6–23.5±3.2%; P=0.20; between-group comparison P<0.05). Furthermore, segmental ejection fraction in injected scar segments improved to a greater degree in patients with baseline segmental ejection fraction <20% (12.1±1.2–19.9±2.7%; n=18; P=0.003), versus <20% (31.7±3.4–35.5±3.3%; n=12; P=0.33, between-group comparison P<0.0001). Conclusions: These findings illustrate a dichotomy in regional responses to TESI. Although scar size reduction was evident in all scar segments, scar size reduction and ventricular functional responses preferentially occurred at the sites of TESI versus non-TESI sites. Furthermore, improvement was greatest when segmental left ventricular dysfunction was severe.Rationale: Transendocardial stem cell injection (TESI) with mesenchymal stem cells improves remodeling in chronic ischemic cardiomyopathy, but the effect of the injection site remains unknown. Objective: To address whether TESI exerts its effects at the site of injection only or also in remote areas, we hypothesized that segmental myocardial scar and segmental ejection fraction improve to a greater extent in injected than in noninjected segments. Methods and Results: Biplane ventriculographic and endocardial tracings were recorded. TESI was guided to 10 sites in infarct-border zones. Sites were mapped according to the 17-myocardial segment model. As a result, 510 segments were analyzed in 30 patients before and 13 months after TESI. Segmental early enhancement defect (a measure of scar size) was reduced by TESI in both injected (−43.7±4.4%; n=95; P <0.01) and noninjected segments (−25.1±7.8%; n=148; P <0.001; between-group comparison P <0.05). Conversely, segmental ejection fraction (a measure of contractile performance) improved in injected scar segments (19.9±3.3–26.3±3.5%; P =0.003) but not in noninjected scar segments (21.3±2.6–23.5±3.2%; P =0.20; between-group comparison P <0.05). Furthermore, segmental ejection fraction in injected scar segments improved to a greater degree in patients with baseline segmental ejection fraction <20% (12.1±1.2–19.9±2.7%; n=18; P =0.003), versus <20% (31.7±3.4–35.5±3.3%; n=12; P =0.33, between-group comparison P <0.0001). Conclusions: These findings illustrate a dichotomy in regional responses to TESI. Although scar size reduction was evident in all scar segments, scar size reduction and ventricular functional responses preferentially occurred at the sites of TESI versus non-TESI sites. Furthermore, improvement was greatest when segmental left ventricular dysfunction was severe. # Novelty and Significance {#article-title-37}


Circulation Research | 2014

Does Transendocardial Injection of Mesenchymal Stem Cells Improve Myocardial Function Locally or Globally? An Analysis From the POSEIDON Randomized Trial

Viky Y. Suncion; Eduard Ghersin; Joel E. Fishman; Juan P. Zambrano; Vasileios Karantalis; Nicole Mandel; Katarina Nelson; Gary Gerstenblith; Darcy L. DiFede; Elayne Breton; Kranthi Sitammagari; Ivonne Hernandez Schulman; Sabrina N. Taldone; Adam R. Williams; Cristina Sanina; Peter Johnston; Jeff Brinker; Peter Altman; Muzammil Mushtaq; Barry Trachtenberg; Adam Mendizabal; Melissa Tracy; José Maria Cardoso da Silva; Ian McNiece; Albert C. Lardo; Richard T. George; Joshua M. Hare; Alan W. Heldman

Rationale: Transendocardial stem cell injection (TESI) with mesenchymal stem cells improves remodeling in chronic ischemic cardiomyopathy, but the effect of the injection site remains unknown. Objective: To address whether TESI exerts its effects at the site of injection only or also in remote areas, we hypothesized that segmental myocardial scar and segmental ejection fraction improve to a greater extent in injected than in noninjected segments. Methods and Results: Biplane ventriculographic and endocardial tracings were recorded. TESI was guided to 10 sites in infarct-border zones. Sites were mapped according to the 17-myocardial segment model. As a result, 510 segments were analyzed in 30 patients before and 13 months after TESI. Segmental early enhancement defect (a measure of scar size) was reduced by TESI in both injected (−43.7±4.4%; n=95; P<0.01) and noninjected segments (−25.1±7.8%; n=148; P<0.001; between-group comparison P<0.05). Conversely, segmental ejection fraction (a measure of contractile performance) improved in injected scar segments (19.9±3.3–26.3±3.5%; P=0.003) but not in noninjected scar segments (21.3±2.6–23.5±3.2%; P=0.20; between-group comparison P<0.05). Furthermore, segmental ejection fraction in injected scar segments improved to a greater degree in patients with baseline segmental ejection fraction <20% (12.1±1.2–19.9±2.7%; n=18; P=0.003), versus <20% (31.7±3.4–35.5±3.3%; n=12; P=0.33, between-group comparison P<0.0001). Conclusions: These findings illustrate a dichotomy in regional responses to TESI. Although scar size reduction was evident in all scar segments, scar size reduction and ventricular functional responses preferentially occurred at the sites of TESI versus non-TESI sites. Furthermore, improvement was greatest when segmental left ventricular dysfunction was severe.Rationale: Transendocardial stem cell injection (TESI) with mesenchymal stem cells improves remodeling in chronic ischemic cardiomyopathy, but the effect of the injection site remains unknown. Objective: To address whether TESI exerts its effects at the site of injection only or also in remote areas, we hypothesized that segmental myocardial scar and segmental ejection fraction improve to a greater extent in injected than in noninjected segments. Methods and Results: Biplane ventriculographic and endocardial tracings were recorded. TESI was guided to 10 sites in infarct-border zones. Sites were mapped according to the 17-myocardial segment model. As a result, 510 segments were analyzed in 30 patients before and 13 months after TESI. Segmental early enhancement defect (a measure of scar size) was reduced by TESI in both injected (−43.7±4.4%; n=95; P <0.01) and noninjected segments (−25.1±7.8%; n=148; P <0.001; between-group comparison P <0.05). Conversely, segmental ejection fraction (a measure of contractile performance) improved in injected scar segments (19.9±3.3–26.3±3.5%; P =0.003) but not in noninjected scar segments (21.3±2.6–23.5±3.2%; P =0.20; between-group comparison P <0.05). Furthermore, segmental ejection fraction in injected scar segments improved to a greater degree in patients with baseline segmental ejection fraction <20% (12.1±1.2–19.9±2.7%; n=18; P =0.003), versus <20% (31.7±3.4–35.5±3.3%; n=12; P =0.33, between-group comparison P <0.0001). Conclusions: These findings illustrate a dichotomy in regional responses to TESI. Although scar size reduction was evident in all scar segments, scar size reduction and ventricular functional responses preferentially occurred at the sites of TESI versus non-TESI sites. Furthermore, improvement was greatest when segmental left ventricular dysfunction was severe. # Novelty and Significance {#article-title-37}


Journal of the American College of Cardiology | 2014

Intracoronary Cardiosphere-Derived Cells After Myocardial Infarction: Evidence of Therapeutic Regeneration in the Final 1-Year Results of the CADUCEUS Trial

Konstantinos Malliaras; Raj Makkar; Rachel R. Smith; Ke Cheng; Edwin Wu; Robert O. Bonow; Linda Marbán; Adam Mendizabal; Eugenio Cingolani; Peter V. Johnston; Gary Gerstenblith; Karl H. Schuleri; Albert C. Lardo; Eduardo Marbán

OBJECTIVES This study sought to report full 1-year results, detailed magnetic resonance imaging analysis, and determinants of efficacy in the prospective, randomized, controlled CADUCEUS (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction) trial. BACKGROUND Cardiosphere-derived cells (CDCs) exerted regenerative effects at 6 months in the CADUCEUS trial. Complete results at the final 1-year endpoint are unknown. METHODS Autologous CDCs (12.5 to 25 × 10(6)) grown from endomyocardial biopsy specimens were infused via the intracoronary route in 17 patients with left ventricular dysfunction 1.5 to 3 months after myocardial infarction (MI) (plus 1 infused off-protocol 14 months post-MI). Eight patients were followed as routine-care control patients. RESULTS In 13.4 months of follow-up, safety endpoints were equivalent between groups. At 1 year, magnetic resonance imaging revealed that CDC-treated patients had smaller scar size compared with control patients. Scar mass decreased and viable mass increased in CDC-treated patients but not in control patients. The single patient infused 14 months post-MI responded similarly. CDC therapy led to improved regional function of infarcted segments compared with control patients. Scar shrinkage correlated with an increase in viability and with improvement in regional function. Scar reduction correlated with baseline scar size but not with a history of temporally remote MI or time from MI to infusion. The changes in left ventricular ejection fraction in CDC-treated subjects were consistent with the natural relationship between scar size and ejection fraction post-MI. CONCLUSIONS Intracoronary administration of autologous CDCs did not raise significant safety concerns. Preliminary indications of bioactivity include decreased scar size, increased viable myocardium, and improved regional function of infarcted myocardium at 1 year post-treatment. These results, which are consistent with therapeutic regeneration, merit further investigation in future trials. (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction [CADUCEUS]; NCT00893360).


Journal of Cardiovascular Translational Research | 2014

Rationale and design of the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy (the POSEIDON-DCM study): a phase I/II, randomized pilot study of the comparative safety and efficacy of transendocardial injection of autologous mesenchymal stem cell vs. allogeneic mesenchymal stem cells in patients with non-ischemic dilated cardiomyopathy.

Muzammil Mushtaq; Darcy L. DiFede; Samuel Golpanian; Aisha Khan; Samirah A. Gomes; Adam Mendizabal; Alan W. Heldman; Joshua M. Hare

While accumulating clinical trials have focused on the impact of cell therapy in patients with acute myocardial infarction (MI) and ischemic cardiomyopathy, there are fewer efforts to examine cell-based therapy in patients with non-ischemic cardiomyopathy (NICM). We hypothesized that cell therapy could have a similar impact in NICM. The POSEIDON-DCM trial is a phase I/II trial designed to address autologous vs. allogeneic bone marrow-derived mesenchymal stem cells (MSCs) in patients with NICM. In this study, cells will be administered transendocardially with the NOGA injection-catheter system to patients (n = 36) randomly allocated to two treatment groups: group 1 (n = 18 auto-human mesenchymal stem cells (hMSC)) and group 2 (n = 18 allo-hMSCs). The primary and secondary objectives are, respectively, to demonstrate the safety and efficacy of allo-hMSCS vs. auto-hMSCs in patients with NICM. This study will establish safety of transendocardial injection of stem cells (TESI), compare phenotypic outcomes, and offer promising advances in the field of cell-based therapy in patients with NICM.


Journal of the American College of Cardiology | 2014

Intracoronary Cardiosphere-Derived Cells After Myocardial Infarction

Konstantinos Malliaras; Raj Makkar; Rachel R. Smith; Ke Cheng; Edwin Wu; Robert O. Bonow; Linda Marbán; Adam Mendizabal; Eugenio Cingolani; Peter V. Johnston; Gary Gerstenblith; Karl H. Schuleri; Albert C. Lardo; Eduardo Marbán

OBJECTIVES This study sought to report full 1-year results, detailed magnetic resonance imaging analysis, and determinants of efficacy in the prospective, randomized, controlled CADUCEUS (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction) trial. BACKGROUND Cardiosphere-derived cells (CDCs) exerted regenerative effects at 6 months in the CADUCEUS trial. Complete results at the final 1-year endpoint are unknown. METHODS Autologous CDCs (12.5 to 25 × 10(6)) grown from endomyocardial biopsy specimens were infused via the intracoronary route in 17 patients with left ventricular dysfunction 1.5 to 3 months after myocardial infarction (MI) (plus 1 infused off-protocol 14 months post-MI). Eight patients were followed as routine-care control patients. RESULTS In 13.4 months of follow-up, safety endpoints were equivalent between groups. At 1 year, magnetic resonance imaging revealed that CDC-treated patients had smaller scar size compared with control patients. Scar mass decreased and viable mass increased in CDC-treated patients but not in control patients. The single patient infused 14 months post-MI responded similarly. CDC therapy led to improved regional function of infarcted segments compared with control patients. Scar shrinkage correlated with an increase in viability and with improvement in regional function. Scar reduction correlated with baseline scar size but not with a history of temporally remote MI or time from MI to infusion. The changes in left ventricular ejection fraction in CDC-treated subjects were consistent with the natural relationship between scar size and ejection fraction post-MI. CONCLUSIONS Intracoronary administration of autologous CDCs did not raise significant safety concerns. Preliminary indications of bioactivity include decreased scar size, increased viable myocardium, and improved regional function of infarcted myocardium at 1 year post-treatment. These results, which are consistent with therapeutic regeneration, merit further investigation in future trials. (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction [CADUCEUS]; NCT00893360).

Collaboration


Dive into the Adam Mendizabal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge