Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan P. Zambrano is active.

Publication


Featured researches published by Juan P. Zambrano.


Circulation Research | 2010

Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation

Konstantinos E. Hatzistergos; Henry Quevedo; Behzad Oskouei; Qinghua Hu; Gary S. Feigenbaum; Irene Margitich; Ramesh Mazhari; Andrew J. Boyle; Juan P. Zambrano; Jose E Rodriguez; Raul A. Dulce; Pradip M. Pattany; David Valdes; Concepcion Revilla; Alan W. Heldman; Ian McNiece; Joshua M. Hare

Rationale: The regenerative potential of the heart is insufficient to fully restore functioning myocardium after injury, motivating the quest for a cell-based replacement strategy. Bone marrow–derived mesenchymal stem cells (MSCs) have the capacity for cardiac repair that appears to exceed their capacity for differentiation into cardiac myocytes. Objective: Here, we test the hypothesis that bone marrow derived MSCs stimulate the proliferation and differentiation of endogenous cardiac stem cells (CSCs) as part of their regenerative repertoire. Methods And Results: Female Yorkshire pigs (n=31) underwent experimental myocardial infarction (MI), and 3 days later, received transendocardial injections of allogeneic male bone marrow–derived MSCs, MSC concentrated conditioned medium (CCM), or placebo (Plasmalyte). A no-injection control group was also studied. MSCs engrafted and differentiated into cardiomyocytes and vascular structures. In addition, endogenous c-kit+ CSCs increased 20-fold in MSC-treated animals versus controls (P<0.001), there was a 6-fold increase in GATA-4+ CSCs in MSC versus control (P<0.001), and mitotic myocytes increased 4-fold (P=0.005). Porcine endomyocardial biopsies were harvested and plated as organotypic cultures in the presence or absence of MSC feeder layers. In vitro, MSCs stimulated c-kit+ CSCs proliferation into enriched populations of adult cardioblasts that expressed Nkx2–5 and troponin I. Conclusions: MSCs stimulate host CSCs, a new mechanism of action underlying successful cell-based therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity

Henry Quevedo; Konstantinos E. Hatzistergos; Behzad Oskouei; Gary S. Feigenbaum; Jose E Rodriguez; David Valdes; Pradip M. Pattany; Juan P. Zambrano; Qinghua Hu; Ian K. McNiece; Alan W. Heldman; Joshua M. Hare

The mechanism(s) underlying cardiac reparative effects of bone marrow-derived mesenchymal stem cells (MSC) remain highly controversial. Here we tested the hypothesis that MSCs regenerate chronically infarcted myocardium through mechanisms comprising long-term engraftment and trilineage differentiation. Twelve weeks after myocardial infarction, female swine received catheter-based transendocardial injections of either placebo (n = 4) or male allogeneic MSCs (200 million; n = 6). Animals underwent serial cardiac magnetic resonance imaging, and in vivo cell fate was determined by co-localization of Y-chromosome (Ypos) cells with markers of cardiac, vascular muscle, and endothelial lineages. MSCs engrafted in infarct and border zones and differentiated into cardiomyocytes as ascertained by co-localization with GATA-4, Nkx2.5, and α-sarcomeric actin. In addition, Ypos MSCs exhibited vascular smooth muscle and endothelial cell differentiation, contributing to large and small vessel formation. Infarct size was reduced from 19.3 ± 1.7% to 13.9 ± 2.0% (P < 0.001), and ejection fraction (EF) increased from 35.0 ± 1.7% to 41.3 ± 2.7% (P < 0.05) in MSC but not placebo pigs over 12 weeks. This was accompanied by increases in regional contractility and myocardial blood flow (MBF), particularly in the infarct border zone. Importantly, MSC engraftment correlated with functional recovery in contractility (R = 0.85, P < 0.05) and MBF (R = 0.76, P < 0.01). Together these findings demonstrate long-term MSC survival, engraftment, and trilineage differentiation following transplantation into chronically scarred myocardium. MSCs are an adult stem cell with the capacity for cardiomyogenesis and vasculogenesis which contribute, at least in part, to their ability to repair chronically scarred myocardium.


Hypertension | 2005

Aortic Pressure Augmentation Predicts Adverse Cardiovascular Events in Patients With Established Coronary Artery Disease

Julio A. Chirinos; Juan P. Zambrano; Simon Chakko; Anila Veerani; Alan Schob; Howard J. Willens; Guido O. Perez; Armando J. Mendez

Pulse pressure (PP), a marker of arterial stiffness, predicts cardiovascular risk. We aimed to determine whether augmentation pressure (AP) derived from the aortic pressure waveform predicts major adverse cardiovascular events (MACE) and death independently of PP in patients with established coronary artery disease (CAD). We prospectively followed-up 297 males undergoing coronary angiography for 1186±424 days. Ascending aortic pressure tracings obtained during catheterization were used to calculate AP (difference between the second and the first systolic peak). Augmentation index (AIx) was defined as AP as a percentage of PP. We evaluated whether AP and AIx can predict the risk of MACE (unstable angina, acute myocardial infarction, coronary revascularization, stroke, or death) and death using Cox regression. All models evaluating AP included PP to assess whether AP adds to the information already provided by PP. Both AP and AIx significantly predicted MACE. The hazard ratio (HR) per 10 mm Hg increase in AP was 1.20 (95% confidence interval [CI], 1.08 to 1.34; P<0.001); the HR for each 10% increase in AIx was 1.28 (95% CI, 1.11 to 1.48; P=0.004). After adjusting for other univariate predictors of MACE, age, and other potential confounders, AP remained a significant predictor of MACE (HR per 10 mm Hg increase=1.19; 95% CI, 1.06 to 1.34; P=0.002), as did AIx (adjusted HR, 1.28; 95% CI, 1.09 to 1.50; P=0.003). AP was a significant predictor of death (HR per 10 mm Hg increase=1.18; 95% CI, 1.02 to 1.39; P=0.03). Higher AIx was associated with a trend toward increased mortality (HR=1.22; 95% CI, 0.98 to 1.52; P=0.056). Aortic AP predicts adverse outcomes in patients with CAD independently of PP and other risk markers.


JAMA | 2014

Transendocardial Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells for Ischemic Cardiomyopathy: The TAC-HFT Randomized Trial

Alan W. Heldman; Darcy L. DiFede; Joel E. Fishman; Juan P. Zambrano; Barry Trachtenberg; Vasileios Karantalis; Muzammil Mushtaq; Adam R. Williams; Viky Y. Suncion; Ian McNiece; Eduard Ghersin; Victor Soto; Gustavo Lopera; Roberto Miki; Howard J. Willens; Robert C. Hendel; Raul Mitrani; Pradip M. Pattany; Gary S. Feigenbaum; Behzad Oskouei; John J. Byrnes; Maureen H. Lowery; Julio Sierra; Mariesty V. Pujol; Cindy Delgado; Phillip J. Gonzalez; Jose E Rodriguez; Luiza Bagno; Didier Rouy; Peter Altman

IMPORTANCE Whether culture-expanded mesenchymal stem cells or whole bone marrow mononuclear cells are safe and effective in chronic ischemic cardiomyopathy is controversial. OBJECTIVE To demonstrate the safety of transendocardial stem cell injection with autologous mesenchymal stem cells (MSCs) and bone marrow mononuclear cells (BMCs) in patients with ischemic cardiomyopathy. DESIGN, SETTING, AND PATIENTS A phase 1 and 2 randomized, blinded, placebo-controlled study involving 65 patients with ischemic cardiomyopathy and left ventricular (LV) ejection fraction less than 50% (September 1, 2009-July 12, 2013). The study compared injection of MSCs (n=19) with placebo (n = 11) and BMCs (n = 19) with placebo (n = 10), with 1 year of follow-up. INTERVENTIONS Injections in 10 LV sites with an infusion catheter. MAIN OUTCOMES AND MEASURES Treatment-emergent 30-day serious adverse event rate defined as a composite of death, myocardial infarction, stroke, hospitalization for worsening heart failure, perforation, tamponade, or sustained ventricular arrhythmias. RESULTS No patient had a treatment-emergent serious adverse events at day 30. The 1-year incidence of serious adverse events was 31.6% (95% CI, 12.6% to 56.6%) for MSCs, 31.6% (95% CI, 12.6%-56.6%) for BMCs, and 38.1% (95% CI, 18.1%-61.6%) for placebo. Over 1 year, the Minnesota Living With Heart Failure score improved with MSCs (-6.3; 95% CI, -15.0 to 2.4; repeated measures of variance, P=.02) and with BMCs (-8.2; 95% CI, -17.4 to 0.97; P=.005) but not with placebo (0.4; 95% CI, -9.45 to 10.25; P=.38). The 6-minute walk distance increased with MSCs only (repeated measures model, P = .03). Infarct size as a percentage of LV mass was reduced by MSCs (-18.9%; 95% CI, -30.4 to -7.4; within-group, P = .004) but not by BMCs (-7.0%; 95% CI, -15.7% to 1.7%; within-group, P = .11) or placebo (-5.2%; 95% CI, -16.8% to 6.5%; within-group, P = .36). Regional myocardial function as peak Eulerian circumferential strain at the site of injection improved with MSCs (-4.9; 95% CI, -13.3 to 3.5; within-group repeated measures, P = .03) but not BMCs (-2.1; 95% CI, -5.5 to 1.3; P = .21) or placebo (-0.03; 95% CI, -1.9 to 1.9; P = .14). Left ventricular chamber volume and ejection fraction did not change. CONCLUSIONS AND RELEVANCE Transendocardial stem cell injection with MSCs or BMCs appeared to be safe for patients with chronic ischemic cardiomyopathy and LV dysfunction. Although the sample size and multiple comparisons preclude a definitive statement about safety and clinical effect, these results provide the basis for larger studies to provide definitive evidence about safety and to assess efficacy of this new therapeutic approach. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00768066.


Circulation Research | 2011

Intramyocardial Stem Cell Injection in Patients With Ischemic Cardiomyopathy Functional Recovery and Reverse Remodeling

Adam R. Williams; Barry Trachtenberg; Darcy L. Velazquez; Ian McNiece; Peter Altman; Didier Rouy; Adam Mendizabal; Pradip M. Pattany; Gustavo Lopera; Joel E. Fishman; Juan P. Zambrano; Alan W. Heldman; Joshua M. Hare

Rationale: Transcatheter, intramyocardial injections of bone marrow–derived cell therapy produces reverse remodeling in large animal models of ischemic cardiomyopathy. Objective: We used cardiac MRI (CMR) in patients with left ventricular (LV) dysfunction related to remote myocardial infarction (MI) to test the hypothesis that bone marrow progenitor cell injection causes functional recovery of scarred myocardium and reverse remodeling. Methods and Results: Eight patients (aged 57.2±13.3 years) received transendocardial, intramyocardial injection of autologous bone marrow progenitor cells (mononuclear or mesenchymal stem cells) in LV scar and border zone. All patients tolerated the procedure with no serious adverse events. CMR at 1 year demonstrated a decrease in end diastolic volume (208.7±20.4 versus 167.4±7.32 mL; P=0.03), a trend toward decreased end systolic volume (142.4±16.5 versus 107.6±7.4 mL; P=0.06), decreased infarct size (P<0.05), and improved regional LV function by peak Eulerian circumferential strain in the treated infarct zone (−8.1±1.0 versus −11.4±1.3; P=0.04). Improvements in regional function were evident at 3 months, whereas the changes in chamber dimensions were not significant until 6 months. Improved regional function in the infarct zone strongly correlated with reduction of end diastolic volume (r2=0.69, P=0.04) and end systolic volume (r2=0.83, P=0.01). Conclusions: These data suggest that transcatheter, intramyocardial injections of autologous bone marrow progenitor cells improve regional contractility of a chronic myocardial scar, and these changes predict subsequent reverse remodeling. The findings support the potential clinical benefits of this new treatment strategy and ongoing randomized clinical trials.


Circulation Research | 2014

Autologous Mesenchymal Stem Cells Produce Concordant Improvements in Regional Function, Tissue Perfusion, and Fibrotic Burden When Administered to Patients Undergoing Coronary Artery Bypass Grafting The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) Trial

Vasileios Karantalis; Darcy L. DiFede; Gary Gerstenblith; Si M Pham; James F. Symes; Juan P. Zambrano; Joel E. Fishman; Pradip M. Pattany; Ian McNiece; John V. Conte; Steven P. Schulman; Katherine C. Wu; Ashish S. Shah; Elayne Breton; Janice Davis-Sproul; Richard Schwarz; Gary S. Feigenbaum; Muzammil Mushtaq; Viky Y. Suncion; Albert C. Lardo; Ivan Borrello; Adam Mendizabal; Tomer Z. Karas; John J. Byrnes; Maureen H. Lowery; Alan W. Heldman; Joshua M. Hare

Rationale: Although accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial. Mesenchymal stem cells (MSCs) improve LV structure and function through several effects including reducing fibrosis, neoangiogenesis, and neomyogenesis. Objective: To test the hypothesis that the impact on cardiac structure and function after intramyocardial injections of autologous MSCs results from a concordance of prorecovery phenotypic effects. Methods and Results: Six patients were injected with autologous MSCs into akinetic/hypokinetic myocardial territories not receiving bypass graft for clinical reasons. MRI was used to measure scar, perfusion, wall thickness, and contractility at baseline, at 3, 6, and 18 months and to compare structural and functional recovery in regions that received MSC injections alone, revascularization alone, or neither. A composite score of MRI variables was used to assess concordance of antifibrotic effects, perfusion, and contraction at different regions. After 18 months, subjects receiving MSCs exhibited increased LV ejection fraction (+9.4±1.7%, P=0.0002) and decreased scar mass (−47.5±8.1%; P<0.0001) compared with baseline. MSC-injected segments had concordant reduction in scar size, perfusion, and contractile improvement (concordant score: 2.93±0.07), whereas revascularized (0.5±0.21) and nontreated segments (−0.07±0.34) demonstrated nonconcordant changes (P<0.0001 versus injected segments). Conclusions: Intramyocardial injection of autologous MSCs into akinetic yet nonrevascularized segments produces comprehensive regional functional restitution, which in turn drives improvement in global LV function. These findings, although inconclusive because of lack of placebo group, have important therapeutic and mechanistic hypothesis-generating implications. Clinical Trial Registration: URL: http://clinicaltrials.gov/show/NCT00587990. Unique identifier: NCT00587990.


Circulation Research | 2011

Intramyocardial Stem Cell Injection in Patients With Ischemic Cardiomyopathy

Adam R. Williams; Barry Trachtenberg; Darcy L. Velazquez; Ian McNiece; Peter Altman; Didier Rouy; Adam Mendizabal; Pradip M. Pattany; Gustavo Lopera; Joel E. Fishman; Juan P. Zambrano; Alan W. Heldman; Joshua M. Hare

Rationale: Transcatheter, intramyocardial injections of bone marrow–derived cell therapy produces reverse remodeling in large animal models of ischemic cardiomyopathy. Objective: We used cardiac MRI (CMR) in patients with left ventricular (LV) dysfunction related to remote myocardial infarction (MI) to test the hypothesis that bone marrow progenitor cell injection causes functional recovery of scarred myocardium and reverse remodeling. Methods and Results: Eight patients (aged 57.2±13.3 years) received transendocardial, intramyocardial injection of autologous bone marrow progenitor cells (mononuclear or mesenchymal stem cells) in LV scar and border zone. All patients tolerated the procedure with no serious adverse events. CMR at 1 year demonstrated a decrease in end diastolic volume (208.7±20.4 versus 167.4±7.32 mL; P=0.03), a trend toward decreased end systolic volume (142.4±16.5 versus 107.6±7.4 mL; P=0.06), decreased infarct size (P<0.05), and improved regional LV function by peak Eulerian circumferential strain in the treated infarct zone (−8.1±1.0 versus −11.4±1.3; P=0.04). Improvements in regional function were evident at 3 months, whereas the changes in chamber dimensions were not significant until 6 months. Improved regional function in the infarct zone strongly correlated with reduction of end diastolic volume (r2=0.69, P=0.04) and end systolic volume (r2=0.83, P=0.01). Conclusions: These data suggest that transcatheter, intramyocardial injections of autologous bone marrow progenitor cells improve regional contractility of a chronic myocardial scar, and these changes predict subsequent reverse remodeling. The findings support the potential clinical benefits of this new treatment strategy and ongoing randomized clinical trials.


American Heart Journal | 2011

Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: A randomized, double-blind, placebo-controlled study of safety and efficacy

Barry Trachtenberg; Darcy L. Velazquez; Adam R. Williams; Ian McNiece; Joel E. Fishman; Kim Nguyen; Didier Rouy; Peter Altman; Richard Schwarz; Adam Mendizabal; Behzad Oskouei; John J. Byrnes; Victor Soto; Melissa Tracy; Juan P. Zambrano; Alan W. Heldman; Joshua M. Hare

Although there is tremendous interest in stem cell (SC)-based therapies for cardiomyopathy caused by chronic myocardial infarction, many unanswered questions regarding the best approach remain. The TAC-HFT study is a phase I/II randomized, double-blind, placebo-controlled trial designed to address several of these questions, including the optimal cell type, delivery technique, and population. This trial compares autologous mesenchymal SCs (MSCs) and whole bone marrow mononuclear cells (BMCs). In addition, the study will use a novel helical catheter to deliver cells transendocardially. Although most trials have used intracoronary delivery, the optimal method is unknown and data suggest that the transendocardial approach may have important advantages. Several trials support the benefit of SCs in patients with chronic ischemic cardiomyopathy (ICMP), although the sample sizes have been small and the number of trials sparse. After a pilot phase of 8 patients, 60 patients with ICMP (left ventricular ejection fraction 15%-50%) will be randomized to group A (30 patients further randomized to receive MSC injection or placebo in a 2:1 fashion) or group B (30 patients further randomized to BMCs or placebo in a 2:1 fashion). All patients will undergo bone marrow aspiration and transendocardial injection of SCs or placebo. The primary and secondary objectives are, respectively, to demonstrate the safety and efficacy (determined primarily by cardiac magnetic resonance imaging) of BMCs and MSCs administered transendocardially in patients with ICMP.


Circulation Research | 2014

Does Transendocardial Injection of Mesenchymal Stem Cells Improve Myocardial Function Locally or Globally? An Analysis From the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis (POSEIDON) Randomized Trial

Viky Y. Suncion; Eduard Ghersin; Joel E. Fishman; Juan P. Zambrano; Vasileios Karantalis; Nicole Mandel; Katarina Nelson; Gary Gerstenblith; Darcy L. Velazquez; Elayne Breton; Kranthi Sitammagari; Ivonne Hernandez Schulman; Sabrina N. Taldone; Adam R. Williams; Cristina Sanina; Peter V. Johnston; Jeffrey A. Brinker; Peter Altman; Muzammil Mushtaq; Barry Trachtenberg; Adam Mendizabal; Melissa Tracy; José Maria Cardoso da Silva; Ian McNiece; Alberto C. Lardo; Richard T. George; Joshua M. Hare; Alan W. Heldman

Rationale: Transendocardial stem cell injection (TESI) with mesenchymal stem cells improves remodeling in chronic ischemic cardiomyopathy, but the effect of the injection site remains unknown. Objective: To address whether TESI exerts its effects at the site of injection only or also in remote areas, we hypothesized that segmental myocardial scar and segmental ejection fraction improve to a greater extent in injected than in noninjected segments. Methods and Results: Biplane ventriculographic and endocardial tracings were recorded. TESI was guided to 10 sites in infarct-border zones. Sites were mapped according to the 17-myocardial segment model. As a result, 510 segments were analyzed in 30 patients before and 13 months after TESI. Segmental early enhancement defect (a measure of scar size) was reduced by TESI in both injected (−43.7±4.4%; n=95; P<0.01) and noninjected segments (−25.1±7.8%; n=148; P<0.001; between-group comparison P<0.05). Conversely, segmental ejection fraction (a measure of contractile performance) improved in injected scar segments (19.9±3.3–26.3±3.5%; P=0.003) but not in noninjected scar segments (21.3±2.6–23.5±3.2%; P=0.20; between-group comparison P<0.05). Furthermore, segmental ejection fraction in injected scar segments improved to a greater degree in patients with baseline segmental ejection fraction <20% (12.1±1.2–19.9±2.7%; n=18; P=0.003), versus <20% (31.7±3.4–35.5±3.3%; n=12; P=0.33, between-group comparison P<0.0001). Conclusions: These findings illustrate a dichotomy in regional responses to TESI. Although scar size reduction was evident in all scar segments, scar size reduction and ventricular functional responses preferentially occurred at the sites of TESI versus non-TESI sites. Furthermore, improvement was greatest when segmental left ventricular dysfunction was severe.Rationale: Transendocardial stem cell injection (TESI) with mesenchymal stem cells improves remodeling in chronic ischemic cardiomyopathy, but the effect of the injection site remains unknown. Objective: To address whether TESI exerts its effects at the site of injection only or also in remote areas, we hypothesized that segmental myocardial scar and segmental ejection fraction improve to a greater extent in injected than in noninjected segments. Methods and Results: Biplane ventriculographic and endocardial tracings were recorded. TESI was guided to 10 sites in infarct-border zones. Sites were mapped according to the 17-myocardial segment model. As a result, 510 segments were analyzed in 30 patients before and 13 months after TESI. Segmental early enhancement defect (a measure of scar size) was reduced by TESI in both injected (−43.7±4.4%; n=95; P <0.01) and noninjected segments (−25.1±7.8%; n=148; P <0.001; between-group comparison P <0.05). Conversely, segmental ejection fraction (a measure of contractile performance) improved in injected scar segments (19.9±3.3–26.3±3.5%; P =0.003) but not in noninjected scar segments (21.3±2.6–23.5±3.2%; P =0.20; between-group comparison P <0.05). Furthermore, segmental ejection fraction in injected scar segments improved to a greater degree in patients with baseline segmental ejection fraction <20% (12.1±1.2–19.9±2.7%; n=18; P =0.003), versus <20% (31.7±3.4–35.5±3.3%; n=12; P =0.33, between-group comparison P <0.0001). Conclusions: These findings illustrate a dichotomy in regional responses to TESI. Although scar size reduction was evident in all scar segments, scar size reduction and ventricular functional responses preferentially occurred at the sites of TESI versus non-TESI sites. Furthermore, improvement was greatest when segmental left ventricular dysfunction was severe. # Novelty and Significance {#article-title-37}


Circulation Research | 2014

Does Transendocardial Injection of Mesenchymal Stem Cells Improve Myocardial Function Locally or Globally? An Analysis From the POSEIDON Randomized Trial

Viky Y. Suncion; Eduard Ghersin; Joel E. Fishman; Juan P. Zambrano; Vasileios Karantalis; Nicole Mandel; Katarina Nelson; Gary Gerstenblith; Darcy L. DiFede; Elayne Breton; Kranthi Sitammagari; Ivonne Hernandez Schulman; Sabrina N. Taldone; Adam R. Williams; Cristina Sanina; Peter Johnston; Jeff Brinker; Peter Altman; Muzammil Mushtaq; Barry Trachtenberg; Adam Mendizabal; Melissa Tracy; José Maria Cardoso da Silva; Ian McNiece; Albert C. Lardo; Richard T. George; Joshua M. Hare; Alan W. Heldman

Rationale: Transendocardial stem cell injection (TESI) with mesenchymal stem cells improves remodeling in chronic ischemic cardiomyopathy, but the effect of the injection site remains unknown. Objective: To address whether TESI exerts its effects at the site of injection only or also in remote areas, we hypothesized that segmental myocardial scar and segmental ejection fraction improve to a greater extent in injected than in noninjected segments. Methods and Results: Biplane ventriculographic and endocardial tracings were recorded. TESI was guided to 10 sites in infarct-border zones. Sites were mapped according to the 17-myocardial segment model. As a result, 510 segments were analyzed in 30 patients before and 13 months after TESI. Segmental early enhancement defect (a measure of scar size) was reduced by TESI in both injected (−43.7±4.4%; n=95; P<0.01) and noninjected segments (−25.1±7.8%; n=148; P<0.001; between-group comparison P<0.05). Conversely, segmental ejection fraction (a measure of contractile performance) improved in injected scar segments (19.9±3.3–26.3±3.5%; P=0.003) but not in noninjected scar segments (21.3±2.6–23.5±3.2%; P=0.20; between-group comparison P<0.05). Furthermore, segmental ejection fraction in injected scar segments improved to a greater degree in patients with baseline segmental ejection fraction <20% (12.1±1.2–19.9±2.7%; n=18; P=0.003), versus <20% (31.7±3.4–35.5±3.3%; n=12; P=0.33, between-group comparison P<0.0001). Conclusions: These findings illustrate a dichotomy in regional responses to TESI. Although scar size reduction was evident in all scar segments, scar size reduction and ventricular functional responses preferentially occurred at the sites of TESI versus non-TESI sites. Furthermore, improvement was greatest when segmental left ventricular dysfunction was severe.Rationale: Transendocardial stem cell injection (TESI) with mesenchymal stem cells improves remodeling in chronic ischemic cardiomyopathy, but the effect of the injection site remains unknown. Objective: To address whether TESI exerts its effects at the site of injection only or also in remote areas, we hypothesized that segmental myocardial scar and segmental ejection fraction improve to a greater extent in injected than in noninjected segments. Methods and Results: Biplane ventriculographic and endocardial tracings were recorded. TESI was guided to 10 sites in infarct-border zones. Sites were mapped according to the 17-myocardial segment model. As a result, 510 segments were analyzed in 30 patients before and 13 months after TESI. Segmental early enhancement defect (a measure of scar size) was reduced by TESI in both injected (−43.7±4.4%; n=95; P <0.01) and noninjected segments (−25.1±7.8%; n=148; P <0.001; between-group comparison P <0.05). Conversely, segmental ejection fraction (a measure of contractile performance) improved in injected scar segments (19.9±3.3–26.3±3.5%; P =0.003) but not in noninjected scar segments (21.3±2.6–23.5±3.2%; P =0.20; between-group comparison P <0.05). Furthermore, segmental ejection fraction in injected scar segments improved to a greater degree in patients with baseline segmental ejection fraction <20% (12.1±1.2–19.9±2.7%; n=18; P =0.003), versus <20% (31.7±3.4–35.5±3.3%; n=12; P =0.33, between-group comparison P <0.0001). Conclusions: These findings illustrate a dichotomy in regional responses to TESI. Although scar size reduction was evident in all scar segments, scar size reduction and ventricular functional responses preferentially occurred at the sites of TESI versus non-TESI sites. Furthermore, improvement was greatest when segmental left ventricular dysfunction was severe. # Novelty and Significance {#article-title-37}

Collaboration


Dive into the Juan P. Zambrano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Mendizabal

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julio A. Chirinos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge