Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam P. Buzby is active.

Publication


Featured researches published by Adam P. Buzby.


Science | 2006

Preserved CD4+ Central Memory T Cells and Survival in Vaccinated SIV-Challenged Monkeys

Norman L. Letvin; John R. Mascola; Yue Sun; Darci A. Gorgone; Adam P. Buzby; Ling Xu; Zhi Yong Yang; Bimal K. Chakrabarti; Srinivas S. Rao; Jörn E. Schmitz; David C. Montefiori; Brianne R. Barker; Fred L. Bookstein; Gary J. Nabel

Vaccine-induced cellular immunity controls virus replication in simian immunodeficiency virus (SIV)–infected monkeys only transiently, leading to the question of whether such vaccines for AIDS will be effective. We immunized monkeys with plasmid DNA and replication-defective adenoviral vectors encoding SIV proteins and then challenged them with pathogenic SIV. Although these monkeys demonstrated a reduction in viremia restricted to the early phase of SIV infection, they showed a prolonged survival. This survival was associated with preserved central memory CD4+ T lymphocytes and could be predicted by the magnitude of the vaccine-induced cellular immune response. These immune correlates of vaccine efficacy should guide the evaluation of AIDS vaccines in humans.


Nature Medicine | 2010

Mosaic vaccines elicit CD8 + T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys

Sampa Santra; Hua-Xin Liao; Ruijin Zhang; Mark Muldoon; Sydeaka Watson; Will Fischer; James Theiler; James Szinger; Harikrishnan Balachandran; Adam P. Buzby; David S. Quinn; Robert Parks; Chun-Yen Tsao; Angela Carville; Keith G. Mansfield; George N. Pavlakis; Barbara K. Felber; Barton F. Haynes; Bette T. Korber; Norman L. Letvin

An effective HIV vaccine must elicit immune responses that recognize genetically diverse viruses. It must generate CD8+ T lymphocytes that control HIV replication and CD4+ T lymphocytes that provide help for the generation and maintenance of both cellular and humoral immune responses against the virus. Creating immunogens that can elicit cellular immune responses against the genetically varied circulating isolates of HIV presents a key challenge for creating an HIV vaccine. Polyvalent mosaic immunogens derived by in silico recombination of natural strains of HIV are designed to induce cellular immune responses that recognize genetically diverse circulating virus isolates. Here we immunized rhesus monkeys by plasmid DNA prime and recombinant vaccinia virus boost with vaccine constructs expressing either consensus or polyvalent mosaic proteins. As compared to consensus immunogens, the mosaic immunogens elicited CD8+ T lymphocyte responses to more epitopes of each viral protein than did the consensus immunogens and to more variant sequences of CD8+ T lymphocyte epitopes. This increased breadth and depth of epitope recognition may contribute both to protection against infection by genetically diverse viruses and to the control of variant viruses that emerge as they mutate away from recognition by cytotoxic T lymphocytes.


Science Translational Medicine | 2011

Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys.

Norman L. Letvin; Srinivas S. Rao; David C. Montefiori; Michael S. Seaman; Yue Sun; So-Yon Lim; Wendy W. Yeh; Mohammed Asmal; Rebecca Gelman; Ling Shen; James B. Whitney; Cathal Seoighe; Miguel Lacerda; Sheila M. Keating; Philip J. Norris; Michael G. Hudgens; Peter B. Gilbert; Adam P. Buzby; Linh Mach; Jinrong Zhang; Harikrishnan Balachandran; George M. Shaw; Stephen D. Schmidt; John Paul Todd; Alan Dodson; John R. Mascola; Gary J. Nabel

A vaccine protecting monkeys against mucosal infection by simian immunodeficiency virus sheds light on immune and genetic correlates of protection. Unraveling Immune Correlates of Vaccine Protection Developing an effective vaccine against HIV-1, the virus that causes AIDS, has been a huge challenge that has stymied AIDS researchers for several decades. A key problem for HIV vaccine trials has been the lack of immune correlates that indicate which antibody and T cell responses in the vaccinees correlate directly with a protective effect. The only HIV vaccine trial to date that has shown a protective effect is the RV144 trial carried out in Thailand between 2003 and 2006, with the final results reported in 2009. In this trial of 16,400 Thai volunteers, those vaccinated with a prime-boost HIV vaccine showed a reduction in the rate of infection by HIV-1 of 31% compared to volunteers given a placebo. The protective effect was seen for up to 3 years after the initial vaccination, but the immune correlates of protection by this vaccine are still not known. In an effort to learn more about possible immune correlates of HIV vaccine protection, Letvin and colleagues used a prime/boost vaccine regimen in monkeys that was similar to that used in the RV144 trial. Monkeys were vaccinated with a plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen and then were challenged with intrarectal doses of one of two isolates of the simian immunodeficiency virus (SIV) every week for 12 weeks. Although the vaccine had no impact on acquisition of the SIVmac251 isolate (which is tough for the monkey immune system to neutralize), the vaccine provided a 50% reduction in infection with the SIVsmE660 isolate (which more readily undergoes neutralization). The authors then examined a variety of immune responses in the protected vaccinated monkeys including cellular, antibody, and innate immune responses; they also examined whether protective host alleles were present in the protected animals. They found that low levels of neutralizing antibodies and a CD4+ T cell response against the HIV envelope (Env) protein correlated with the protective effect. In addition, monkeys that expressed two TRIM5 alleles that help to restrict SIV replication in host cells were protected by the vaccine, whereas monkeys expressing one TRIM5 allele that is permissive for SIV replication were not. This study begins to unravel the immune and genetic correlates of protection in nonhuman primates and highlights the need to scrutinize these types of correlates in future trials of HIV vaccines in human volunteers. The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was about a one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01–negative monkeys challenged with SIVsmE660, no CD8+ T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4+ T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanisms of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies.


Nature | 2014

Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV

Mario Roederer; Brandon F. Keele; Stephen D. Schmidt; Rosemarie D. Mason; Hugh C. Welles; Will Fischer; Celia C. LaBranche; Kathryn E. Foulds; Mark K. Louder; Zhi Yong Yang; John Todd; Adam P. Buzby; Linh Mach; Ling Shen; Kelly E. Seaton; Brandy M. Ward; Robert T. Bailer; Raphael Gottardo; Wenjuan Gu; Guido Ferrari; S. Munir Alam; Thomas N. Denny; David C. Montefiori; Georgia D. Tomaras; Bette T. Korber; Martha Nason; Robert A. Seder; Richard A. Koup; Norman L. Letvin; Srinivas S. Rao

A major challenge for the development of a highly effective AIDS vaccine is the identification of mechanisms of protective immunity. To address this question, we used a nonhuman primate challenge model with simian immunodeficiency virus (SIV). We show that antibodies to the SIV envelope are necessary and sufficient to prevent infection. Moreover, sequencing of viruses from breakthrough infections revealed selective pressure against neutralization-sensitive viruses; we identified a two-amino-acid signature that alters antigenicity and confers neutralization resistance. A similar signature confers resistance of human immunodeficiency virus (HIV)-1 to neutralization by monoclonal antibodies against variable regions 1 and 2 (V1V2), suggesting that SIV and HIV share a fundamental mechanism of immune escape from vaccine-elicited or naturally elicited antibodies. These analyses provide insight into the limited efficacy seen in HIV vaccine trials.


Journal of Virology | 2007

A replication-competent adenovirus-human immunodeficiency virus (Ad-HIV) tat and Ad-HIV env priming/Tat and envelope protein boosting regimen elicits enhanced protective efficacy against simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques.

Thorsten Demberg; Ruth H. Florese; Megan J. Heath; Kay Larsen; Irene Kalisz; V. S. Kalyanaraman; Eun Mi Lee; Ranajit Pal; David Venzon; Richard Grant; L. Jean Patterson; Birgit Korioth-Schmitz; Adam P. Buzby; Dilani Dombagoda; David C. Montefiori; Norman L. Letvin; Aurelio Cafaro; Barbara Ensoli; Marjorie Robert-Guroff

ABSTRACT We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIVmac251. Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV89.6P challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV89.6P. We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV89.6P challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV89.6P-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.


Journal of Virology | 2007

No Evidence for Consistent Virus-Specific Immunity in Simian Immunodeficiency Virus-Exposed, Uninfected Rhesus Monkeys

Norman L. Letvin; Srini S. Rao; Vi Dang; Adam P. Buzby; Birgit Korioth-Schmitz; Dilani Dombagoda; Jenny G. Parvani; Ryon H. Clarke; Liat Bar; Kevin R. Carlson; Pamela A. Kozlowski; Vanessa M. Hirsch; John R. Mascola; Gary J. Nabel

ABSTRACT Defining the immune correlates of the protection against human immunodeficiency virus type 1 (HIV-1) acquisition in individuals who are exposed to HIV-1 but do not become infected may provide important direction for the creation of an HIV-1 vaccine. We have employed the simian immunodeficiency virus (SIV)/rhesus monkey model to determine whether monkeys can be repeatedly exposed to a primate lentivirus by a mucosal route and escape infection and whether virus-specific immune correlates of protection from infection can be identified in uninfected monkeys. Five of 18 rhesus monkeys exposed 18 times by intrarectal inoculation to SIVmac251 or SIVsmE660 were resistant to infection, indicating that the exposed/uninfected phenotype can be reproduced in a nonhuman primate AIDS model. However, routine peripheral blood lymphocyte gamma interferon enzyme-linked immunospot (ELISPOT), tetramer, and intracellular cytokine staining assays, as well as cytokine-augmented ELISPOT and peptide-stimulated tetramer assays, failed to define a systemic antigen-specific cellular immune correlate to this protection. Further, local cell-mediated immunity could not be demonstrated by tetramer assays of these protected monkeys, and local humoral immunity was not associated with protection against acquisition of virus in another cohort of mucosally exposed monkeys. Therefore, resistance to mucosal infection in these monkeys may not be mediated by adaptive virus-specific immune mechanisms. Rather, innate immune mechanisms or an intact epithelial barrier may be responsible for protection against mucosal infection in this population of monkeys.


Journal of Virology | 2006

Virus-Specific Cellular Immune Correlates of Survival in Vaccinated Monkeys after Simian Immunodeficiency Virus Challenge

Yue Sun; Jörn E. Schmitz; Adam P. Buzby; Brianne R. Barker; Srinivas S. Rao; Ling Xu; Zhi Yong Yang; John R. Mascola; Gary J. Nabel; Norman L. Letvin

ABSTRACT Understanding the characteristics of the virus-specific T-lymphocyte response that will confer optimal protection against the clinical progression of AIDS will inform the development of an effective cellular immunity-based human immunodeficiency virus vaccine. We have recently shown that survival in plasmid DNA-primed/recombinant adenovirus-boosted rhesus monkeys that are challenged with the simian immunodeficiency virus SIVmac251 is associated with the preservation postchallenge of central memory CD4+ T lymphocytes and robust gamma interferon (IFN-γ)-producing SIV-specific CD8+ and CD4+ T-lymphocyte responses. The present studies were initiated to extend these observations to determine which virus-specific T-lymphocyte subpopulations play a primary role in controlling disease progression and to characterize the functional repertoire of these cells. We show that the preservation of the SIV-specific central memory CD8+ T-lymphocyte population and a linked SIV-specific CD4+ T-lymphocyte response are associated with prolonged survival in vaccinated monkeys following challenge. Furthermore, we demonstrate that SIV-specific IFN-γ-, tumor necrosis factor alpha-, and interleukin-2-producing T lymphocytes are all comparably associated with protection against disease progression. These findings underscore the contribution of virus-specific central memory T lymphocytes to controlling clinical progression in vaccinated individuals following a primate immunodeficiency virus infection.


Journal of Virology | 2008

Simian Immunodeficiency Virus (SIV)-Specific CD8+ T-Cell Responses in Vervet African Green Monkeys Chronically Infected with SIVagm

Roland C. Zahn; Melisa Rett; Birgit Korioth-Schmitz; Yue Sun; Adam P. Buzby; Simoy Goldstein; Charles R. Brown; Russell Byrum; Gordon J. Freeman; Norman L. Letvin; Vanessa M. Hirsch; Jörn E. Schmitz

ABSTRACT African green monkeys (AGM) do not develop overt signs of disease following simian immunodeficiency virus (SIV) infection. While it is still unknown how natural hosts like AGM can cope with this lentivirus infection, a large number of investigations have shown that CD8+ T-cell responses are critical for the containment of AIDS viruses in humans and Asian nonhuman primates. Here we have compared the phenotypes of T-cell subsets and magnitudes of SIV-specific CD8+ T-cell responses in vervet AGM chronically infected with SIVagm and rhesus monkeys (RM) infected with SIVmac. In comparison to RM, vervet AGM exhibited weaker signs of immune activation and associated proliferation of CD8+ T cells as detected by granzyme B, Ki-67, and programmed death 1 staining. By gamma interferon enzyme-linked immunospot assay and intracellular cytokine staining, SIV Gag- and Env-specific immune responses were detectable at variable but lower levels in vervet AGM than in RM. These observations demonstrate that natural hosts like SIV-infected vervet AGM develop SIV-specific T-cell responses, but the disease-free course of infection does not depend on the generation of robust CD8+ T-cell responses.


Journal of Virology | 2009

Recombinant Mycobacterium bovis BCG Prime-Recombinant Adenovirus Boost Vaccination in Rhesus Monkeys Elicits Robust Polyfunctional Simian Immunodeficiency Virus-Specific T-Cell Responses

Mark J. Cayabyab; Birgit Korioth-Schmitz; Yue Sun; Angela Carville; Harikrishnan Balachandran; Ayako Miura; Kevin R. Carlson; Adam P. Buzby; Barton F. Haynes; William R. Jacobs; Norman L. Letvin

ABSTRACT While mycobacteria have been proposed as vaccine vectors because of their persistence and safety, little has been done systematically to optimize their immunogenicity in nonhuman primates. We successfully generated recombinant Mycobacterium bovis BCG (rBCG) expressing simian immunodeficiency virus (SIV) Gag and Pol as multigenic, nonintegrating vectors, but rBCG-expressing SIV Env was unstable. A dose and route determination study in rhesus monkeys revealed that intramuscular administration of rBCG was associated with local reactogenicity, whereas intravenous and intradermal administration of 106 to 108 CFU of rBCG was well tolerated. After single or repeat rBCG inoculations, monkeys developed high-frequency gamma interferon enzyme-linked immunospot responses against BCG purified protein derivative. However, the same animals developed only modest SIV-specific CD8+ T-cell responses. Nevertheless, high-frequency SIV-specific cellular responses were observed in the rBCG-primed monkeys after boosting with recombinant adenovirus 5 (rAd5) expressing the SIV antigens. These cellular responses were of greater magnitude and more persistent than those generated after vaccination with rAd5 alone. The vaccine-elicited cellular responses were predominantly polyfunctional CD8+ T cells. These findings support the further exploration of mycobacteria as priming vaccine vectors.


Virology | 2012

Breadth of cellular and humoral immune responses elicited in rhesus monkeys by multi-valent mosaic and consensus immunogens

Sampa Santra; Mark Muldoon; Sydeaka Watson; Adam P. Buzby; Harikrishnan Balachandran; Kevin R. Carlson; Linh Mach; Wing Pui Kong; Krisha McKee; Zhi Yong Yang; Srinivas S. Rao; John R. Mascola; Gary J. Nabel; Bette T. Korber; Norman L. Letvin

To create an HIV-1 vaccine that generates sufficient breadth of immune recognition to protect against the genetically diverse forms of the circulating virus, we have been exploring vaccines based on consensus and mosaic protein designs. Increasing the valency of a mosaic immunogen cocktail increases epitope coverage but with diminishing returns, as increasingly rare epitopes are incorporated into the mosaic proteins. In this study we compared the immunogenicity of 2-valent and 3-valent HIV-1 envelope mosaic immunogens in rhesus monkeys. Immunizations with the 3-valent mosaic immunogens resulted in a modest increase in the breadth of vaccine-elicited T lymphocyte responses compared to the 2-valent mosaic immunogens. However, the 3-valent mosaic immunogens elicited significantly higher neutralizing responses to Tier 1 viruses than the 2-valent mosaic immunogens. These findings underscore the potential utility of polyvalent mosaic immunogens for eliciting both cellular and humoral immune responses to HIV-1.

Collaboration


Dive into the Adam P. Buzby's collaboration.

Top Co-Authors

Avatar

Norman L. Letvin

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Srinivas S. Rao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Mascola

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yue Sun

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harikrishnan Balachandran

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge