Adam Rubrum
St. Jude Children's Research Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adam Rubrum.
Nature | 2012
Damian C. Ekiert; Arun K. Kashyap; John Steel; Adam Rubrum; Gira Bhabha; Reza Khayat; Jeong Hyun Lee; Michael A. Dillon; Ryann E. O’Neil; Aleksandr M. Faynboym; Michael Horowitz; Lawrence Horowitz; Andrew B. Ward; Peter Palese; Richard J. Webby; Richard A. Lerner; Ramesh R. Bhatt; Ian A. Wilson
Immune recognition of protein antigens relies on the combined interaction of multiple antibody loops, which provide a fairly large footprint and constrain the size and shape of protein surfaces that can be targeted. Single protein loops can mediate extremely high-affinity binding, but it is unclear whether such a mechanism is available to antibodies. Here we report the isolation and characterization of an antibody called C05, which neutralizes strains from multiple subtypes of influenza A virus, including H1, H2 and H3. X-ray and electron microscopy structures show that C05 recognizes conserved elements of the receptor-binding site on the haemagglutinin surface glycoprotein. Recognition of the haemagglutinin receptor-binding site is dominated by a single heavy-chain complementarity-determining region 3 loop, with minor contacts from heavy-chain complementarity-determining region 1, and is sufficient to achieve nanomolar binding with a minimal footprint. Thus, binding predominantly with a single loop can allow antibodies to target small, conserved functional sites on otherwise hypervariable antigens.
Emerging Infectious Diseases | 2011
Mariette F. Ducatez; Ben M. Hause; Evelyn Stigger-Rosser; Daniel Darnell; Cesar A. Corzo; Kevin Juleen; Randy R. Simonson; Christy Brockwell-Staats; Adam Rubrum; David Wang; Ashley E. Webb; Jeri-Carol Crumpton; James Lowe; Marie Gramer; Richard J. Webby
TOC Summary: Viruses belonging to these novel genotypes are indistinguishable phenotypically from endemic swine viruses.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Jeong-Ki Kim; Ghazi Kayali; David Walker; Heather L. Forrest; Ali H. Ellebedy; Yolanda Griffin; Adam Rubrum; Mahmoud M. Bahgat; Mohamed A. Kutkat; Mohamed Ashraf Ali; Jerry R. Aldridge; Nicholas J. Negovetich; Scott Krauss; Richard J. Webby; Robert G. Webster
In Egypt, efforts to control highly pathogenic H5N1 avian influenza virus in poultry and in humans have failed despite increased biosecurity, quarantine, and vaccination at poultry farms. The ongoing circulation of HP H5N1 avian influenza in Egypt has caused >100 human infections and remains an unresolved threat to veterinary and public health. Here, we describe that the failure of commercially available H5 poultry vaccines in Egypt may be caused in part by the passive transfer of maternal H5N1 antibodies to chicks, inhibiting their immune response to vaccination. We propose that the induction of a protective immune response to H5N1 is suppressed for an extended period in young chickens. This issue, among others, must be resolved and additional steps must be taken before the outbreaks in Egypt can be controlled.
Clinical Infectious Diseases | 2011
Sarah Forgie; Julia Keenliside; Craig W. Wilkinson; Richard J. Webby; Patricia Lu; Ole Sorensen; Kevin Fonseca; Subrata Barman; Adam Rubrum; Evelyn Stigger; Thomas J. Marrie; Frank Marshall; Donald Spady; Jia Hu; Mark Loeb; Margaret L. Russell; Lorne A. Babiuk
BACKGROUND Swine outbreaks of pandemic influenza A (pH1N1) suggest human introduction of the virus into herds. This study investigates a pH1N1 outbreak occurring on a swine research farm with 37 humans and 1300 swine in Alberta, Canada, from 12 June through 4 July 2009. METHODS The staff was surveyed about symptoms, vaccinations, and livestock exposures. Clinical findings were recorded, and viral testing and molecular characterization of isolates from humans and swine were performed. Human serological testing and performance of the human influenza-like illness (ILI) case definition were also studied. RESULTS Humans were infected before swine. Seven of 37 humans developed ILI, and 2 (including the index case) were positive for pH1N1 by reverse-transcriptase polymerase chain reaction (RT-PCR). Swine were positive for pH1N1 by RT-PCR 6 days after contact with the human index case and developed symptoms within 24 h of their positive viral test results. Molecular characterization of the entire viral genomes from both species showed minor nucleotide heterogeneity, with 1 amino acid change each in the hemagglutinin and nucleoprotein genes. Sixty-seven percent of humans with positive serological test results and 94% of swine with positive swab specimens had few or no symptoms. Compared with serological testing, the human ILI case definition had a specificity of 100% and sensitivity of 33.3%. The only factor associated with seropositivity was working in the swine nursery. CONCLUSIONS Epidemiologic data support human-to-swine transmission, and molecular characterization confirms that virtually identical viruses infected humans and swine in this outbreak. Both species had mild illness and recovered without sequelae.
PLOS Pathogens | 2010
Arun K. Kashyap; John Steel; Adam Rubrum; Angeles Estelles; Raffaella Briante; Natalia A. Ilyushina; Li Xu; Ryann E. Swale; Aleksandr M. Faynboym; Pamela K. Foreman; Michael Horowitz; Lawrence Horowitz; Richard J. Webby; Peter Palese; Richard A. Lerner; Ramesh R. Bhatt
Influenza viruses elude immune responses and antiviral chemotherapeutics through genetic drift and reassortment. As a result, the development of new strategies that attack a highly conserved viral function to prevent and/or treat influenza infection is being pursued. Such novel broadly acting antiviral therapies would be less susceptible to virus escape and provide a long lasting solution to the evolving virus challenge. Here we report the in vitro and in vivo activity of a human monoclonal antibody (A06) against two isolates of the 2009 H1N1 pandemic influenza virus. This antibody, which was obtained from a combinatorial library derived from a survivor of highly pathogenic H5N1 infection, neutralizes H5N1, seasonal H1N1 and 2009 “Swine” H1N1 pandemic influenza in vitro with similar potency and is capable of preventing and treating 2009 H1N1 influenza infection in murine models of disease. These results demonstrate broad activity of the A06 antibody and its utility as an anti-influenza treatment option, even against newly evolved influenza strains to which there is limited immunity in the general population.
Journal of Virology | 2010
Adrianus C. M. Boon; Jennifer DeBeauchamp; Scott Krauss; Adam Rubrum; Ashley Webb; Robert G. Webster; Janet E. McElhaney; Richard J. Webby
ABSTRACT Our ability to rapidly respond to an emerging influenza pandemic is hampered somewhat by the lack of a susceptible small-animal model. To develop a more sensitive model, we pathotyped 18 low-pathogenic non-mouse-adapted influenza A viruses of human and avian origin in DBA/2 and C57BL/6 mice. The majority of the isolates (13/18) induced severe morbidity and mortality in DBA/2 mice upon intranasal challenge with 1 million infectious doses. Also, at a 100-fold-lower dose, more than 50% of the viruses induced severe weight loss, and mice succumbed to the infection. In contrast, only two virus strains were pathogenic for C57BL/6 mice upon high-dose inoculation. Therefore, DBA/2 mice are a suitable model to validate influenza A virus vaccines and antiviral therapies without the need for extensive viral adaptation. Correspondingly, we used the DBA/2 model to assess the level of protection afforded by preexisting pandemic H1N1 2009 virus (H1N1pdm) cross-reactive human antibodies detected by a hemagglutination inhibition assay. Passive transfer of these antibodies prior to infection protected mice from H1N1pdm-induced pathogenicity, demonstrating the effectiveness of these cross-reactive neutralizing antibodies in vivo.
Emerging Infectious Diseases | 2014
Ghazi Kayali; Ahmed Kandeil; Rabeh El-Shesheny; Ahmed S. Kayed; Mokhtar M. Gomaa; Asmaa M. Maatouq; Mahmoud M. Shehata; Yassmin Moatasim; Ola Bagato; Zhipeng Cai; Adam Rubrum; Mohamed A. Kutkat; Pamela McKenzie; Robert James Webster; Richard J. Webby; Mohamed Ahmed Ali
Continuous circulation of influenza A(H5N1) virus among poultry in Egypt has created an epicenter in which the viruses evolve into newer subclades and continue to cause disease in humans. To detect influenza viruses in Egypt, since 2009 we have actively surveyed various regions and poultry production sectors. From August 2010 through January 2013, >11,000 swab samples were collected; 10% were positive by matrix gene reverse transcription PCR. During this period, subtype H9N2 viruses emerged, cocirculated with subtype H5N1 viruses, and frequently co-infected the same avian host. Genetic and antigenic analyses of viruses revealed that influenza A(H5N1) clade 2.2.1 viruses are dominant and that all subtype H9N2 viruses are G1-like. Cocirculation of different subtypes poses concern for potential reassortment. Avian influenza continues to threaten public and animal health in Egypt, and continuous surveillance for avian influenza virus is needed.
Vaccine | 2011
Ali H. Ellebedy; Mariette F. Ducatez; S. Duan; Evelyn Stigger-Rosser; Adam Rubrum; Elena A. Govorkova; Robert G. Webster; Richard J. Webby
Early epidemiologic and serologic studies have suggested pre-existing immunity to the pandemic A (H1N1) 2009 influenza virus (H1N1pdm) may be altering its morbidity and mortality in humans. To determine the role that contemporary seasonal H1N1 virus infection or trivalent inactivated vaccine (TIV) might be playing in this immunity we conducted a vaccination-challenge study in ferrets. Vaccination with TIV was unable to alter subsequent morbidity or contact transmission in ferrets following challenge with H1N1pdm. Conversely, prior infection with the contemporary seasonal H1N1 strain altered morbidity, but not transmission, of H1N1pdm despite the detection of only minimal levels of cross reactive antibodies.
PLOS ONE | 2011
Eric A. Weaver; Adam Rubrum; Richard J. Webby; Michael A. Barry
Influenza poses a persistent worldwide threat to the human population. As evidenced by the 2009 H1N1 pandemic, current vaccine technologies are unable to respond rapidly to this constantly diverging pathogen. We tested the utility of adenovirus (Ad) vaccines expressing centralized consensus influenza antigens. Ad vaccines were produced within 2 months and protected against influenza in mice within 3 days of vaccination. Ad vaccines were able to protect at doses as low as 107 virus particles/kg indicating that approximately 1,000 human doses could be rapidly generated from standard Ad preparations. To generate broadly cross-reactive immune responses, centralized consensus antigens were constructed against H1 influenza and against H1 through H5 influenza. Twenty full-length H1 HA sequences representing the main branches of the H1 HA phylogenetic tree were used to create a synthetic centralized gene, HA1-con. HA1-con minimizes the degree of sequence dissimilarity between the vaccine and existing circulating viruses. The centralized H1 gene, HA1-con, induced stronger immune responses and better protection against mismatched virus challenges as compared to two wildtype H1 genes. HA1-con protected against three genetically diverse lethal influenza challenges. When mice were challenged with 1934 influenza A/PR/8/34, HA1-con protected 100% of mice while vaccine generated from 2009 A/TX/05/09 only protected 40%. Vaccination with 1934 A/PR/8/34 and 2009 A/TX/05/09 protected 60% and 20% against 1947 influenza A/FM/1/47, respectively, whereas 80% of mice vaccinated with HA1-con were protected. Notably, 80% of mice challenged with 2009 swine flu isolate A/California/4/09 were protected by HA1-con vaccination. These data show that HA1-con in Ad has potential as a rapid and universal vaccine for H1N1 influenza viruses.
PLOS ONE | 2011
Glendie Marcelin; Rebecca M. DuBois; Adam Rubrum; Charles J. Russell; Janet E. McElhaney; Richard J. Webby
Background Exposure to contemporary seasonal influenza A viruses affords partial immunity to pandemic H1N1 2009 influenza A virus (pH1N1) infection. The impact of antibodies to the neuraminidase (NA) of seasonal influenza A viruses to cross-immunity against pH1N1 infection is unknown. Methods and Results Antibodies to the NA of different seasonal H1N1 influenza strains were tested for cross-reactivity against A/California/04/09 (pH1N1). A panel of reverse genetic (rg) recombinant viruses was generated containing 7 genes of the H1N1 influenza strain A/Puerto Rico/08/34 (PR8) and the NA gene of either the pandemic H1N1 2009 strain (pH1N1) or one of the following contemporary seasonal H1N1 strains: A/Solomon/03/06 (rg Solomon) or A/Brisbane/59/07 (rg Brisbane). Convalescent sera collected from mice infected with recombinant viruses were measured for cross-reactive antibodies to pH1N1 via Hemagglutinin Inhibition (HI) or Enzyme-Linked Immunosorbent Assay (ELISA). The ectodomain of a recombinant NA protein from the pH1N1 strain (pNA-ecto) was expressed, purified and used in ELISA to measure cross-reactive antibodies. Analysis of sera from elderly humans immunized with trivalent split-inactivated influenza (TIV) seasonal vaccines prior to 2009 revealed considerable cross-reactivity to pNA-ecto. High titers of cross-reactive antibodies were detected in mice inoculated with either rg Solomon or rg Brisbane. Convalescent sera from mice inoculated with recombinant viruses were used to immunize naïve recipient Balb/c mice by passive transfer prior to challenge with pH1N1. Mice receiving rg California sera were better protected than animals receiving rg Solomon or rg Brisbane sera. Conclusions The NA of contemporary seasonal H1N1 influenza strains induces a cross-reactive antibody response to pH1N1 that correlates with reduced lethality from pH1N1 challenge, albeit less efficiently than anti-pH1N1 NA antibodies. These findings demonstrate that seasonal NA antibodies contribute to but are not sufficient for cross-reactive immunity to pH1N1.