Adam S. Duerfeldt
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adam S. Duerfeldt.
Journal of the American Chemical Society | 2012
Adam S. Duerfeldt; Laura B. Peterson; Jason C. Maynard; Chun Leung Ng; Davide Eletto; Olga Ostrovsky; Heather E. Shinogle; David Moore; Yair Argon; Christopher V. Nicchitta; Brian S. J. Blagg
Heat shock protein 90 (Hsp90) represents a promising therapeutic target for the treatment of cancer and other diseases. Unfortunately, results from clinical trials have been disappointing as off-target effects and toxicities have been observed. These detriments may be a consequence of pan-Hsp90 inhibition, as all clinically evaluated Hsp90 inhibitors simultaneously disrupt all four human Hsp90 isoforms. Using a structure-based approach, we designed an inhibitor of Grp94, the ER-resident Hsp90. The effect manifested by compound 2 on several Grp94 and Hsp90α/β (cytosolic isoforms) clients were investigated. Compound 2 prevented intracellular trafficking of the Toll receptor, inhibited the secretion of IGF-II, affected the conformation of Grp94, and suppressed Drosophila larval growth, all Grp94-dependent processes. In contrast, compound 2 had no effect on cell viability or cytosolic Hsp90α/β client proteins at similar concentrations. The design, synthesis, and evaluation of 2 are described herein.
Journal of Biological Chemistry | 2012
Amirthaa Suntharalingam; Jose F. Abisambra; John C. O'Leary; John Koren; Bo Zhang; Myung Kuk Joe; Laura J. Blair; Shannon E. Hill; Umesh K. Jinwal; Matthew Cockman; Adam S. Duerfeldt; Stanislav I. Tomarev; Brian S. J. Blagg; Raquel L. Lieberman; Chad A. Dickey
Background: Mutant myocilin accumulates in the endoplasmic reticulum for unknown reasons. Results: Glucose-regulated protein (Grp) 94 depletion reduces mutant myocilin by engaging autophagy. Conclusion: Grp94 triages mutant myocilin through ER-associated degradation, subverting autophagy. Significance: Treating glaucoma could be possible by inhibiting Grp94 and reducing its novel client, mutant myocilin. Clearance of misfolded proteins in the endoplasmic reticulum (ER) is traditionally handled by ER-associated degradation (ERAD), a process that requires retro-translocation and ubiquitination mediated by a luminal chaperone network. Here we investigated whether the secreted, glaucoma-associated protein myocilin was processed by this pathway. Myocilin is typically transported through the ER/Golgi network, but inherited mutations in myocilin lead to its misfolding and aggregation within trabecular meshwork cells, and ultimately, ER stress-induced cell death. Using targeted knockdown strategies, we determined that glucose-regulated protein 94 (Grp94), the ER equivalent of heat shock protein 90 (Hsp90), specifically recognizes mutant myocilin, triaging it through ERAD. The addition of mutant myocilin to the short list of Grp94 clients strengthens the hypothesis that β-strand secondary structure drives client association with Grp94. Interestingly, the ERAD pathway is incapable of efficiently handling the removal of mutant myocilin, but when Grp94 is depleted, degradation of mutant myocilin is shunted away from ERAD toward a more robust clearance pathway for aggregation-prone proteins, the autophagy system. Thus ERAD inefficiency for distinct aggregation-prone proteins can be subverted by manipulating ER chaperones, leading to more effective clearance by the autophagic/lysosomal pathway. General Hsp90 inhibitors and a selective Grp94 inhibitor also facilitate clearance of mutant myocilin, suggesting that therapeutic approaches aimed at inhibiting Grp94 could be beneficial for patients suffering from some cases of myocilin glaucoma.
Journal of the American Chemical Society | 2014
Adam S. Duerfeldt; Dale L. Boger
Total syntheses of (−)-pyrimidoblamic acid and P-3A are disclosed. Central to the convergent approach is a powerful inverse electron demand Diels–Alder reaction between substituted electron-deficient 1,2,3-triazines and a highly functionalized and chiral primary amidine, which forms the pyrimidine cores and introduces all necessary stereochemistry in a single step. Intrinsic in the convergent approach is the potential it provides for the late stage divergent synthesis of modified analogs bearing deep-seated changes in either the pyrimidine cores or the highly functionalized C2 side chain common to both natural products. The examination of the key cycloaddition reaction revealed that the inherent 1,2,3-triazine mode of cycloaddition (C4/N1 vs C5/N2) as well as the amidine regioselectivity were unaffected by introduction of two electron-withdrawing groups (−CO2R) at C4 and C6 of the 1,2,3-triazine even if C5 is unsubstituted (Me or H), highlighting the synthetic potential of the powerful pyrimidine synthesis.
Organic Letters | 2014
Erin D. Anderson; Adam S. Duerfeldt; Kaicheng Zhu; Christopher M. Glinkerman; Dale L. Boger
The scope of the [4 + 2] cycloaddition reactions of substituted 1,2,3-triazines, bearing noncomplementary substitution with electron-withdrawing groups at C4 and/or C6, is described. The studies define key electronic and steric effects of substituents impacting the reactivity, mode (C4/N1 vs C5/N2), and regioselectivity of the cycloaddition reactions of 1,2,3-triazines with amidines, enamines, and ynamines, providing access to highly functionalized heterocycles.
Bioorganic & Medicinal Chemistry Letters | 2010
Adam S. Duerfeldt; Brian S. J. Blagg
The 90 kDa heat shock proteins (Hsp90) represent a class of molecular chaperones responsible for the maturation and stabilization of many oncogenic proteins. Disrupting the ability of ATP to bind and facilitate the operation of Hsp90 has emerged as a promising approach toward cancer chemotherapeutic development. While numerous Hsp90 inhibitory scaffolds have been identified, progress through the clinic has revealed many obstacles that should be addressed in future analogue development. Recent reports of the complications, pitfalls, and downstream effects associated with Hsp90 inhibition are discussed herein, in hopes of providing a reference that can be used to guide the future design of Hsp90 inhibitory scaffolds.
Organic Letters | 2009
Adam S. Duerfeldt; Gary E. L. Brandt; Brian S. J. Blagg
Conformationally constrained cis-amide chimeric inhibitors of Hsp90 have been synthesized and evaluated for their Hsp90 inhibitory activity. These new compounds exhibited Hsp90 ATPase inhibition and induced Hsp90-dependent client protein degradation in a dose-dependent manner. Biological data reported herein suggests that amide bond isomerization of geldanamycin derivatives plays an important role in affinity for the heteroprotein complex present in cancer cells.
Journal of Medicinal Chemistry | 2016
Vincent M. Crowley; Anuj Khandelwal; Sanket Mishra; Andrew R. Stothert; Dustin J. E. Huard; Jinbo Zhao; Aaron Muth; Adam S. Duerfeldt; James L. Kizziah; Raquel L. Lieberman; Chad A. Dickey; Brian S. J. Blagg
Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum resident of the heat shock protein 90 kDa (Hsp90) family of molecular chaperones. Grp94 associates with many proteins involved in cell adhesion and signaling, including integrins, Toll-like receptors, immunoglobulins, and mutant myocilin. Grp94 has been implicated as a target for several therapeutic areas including glaucoma, cancer metastasis, and multiple myeloma. While 85% identical to other Hsp90 isoforms, the N-terminal ATP-binding site of Grp94 possesses a unique hydrophobic pocket that was used to design isoform-selective inhibitors. Incorporation of a cis-amide bioisostere into the radamide scaffold led to development of the original Grp94-selective inhibitor, BnIm. Structure-activity relationship studies have now been performed on the aryl side chain of BnIm, which resulted in improved analogues that exhibit better potency and selectivity for Grp94. These analogues also manifest superior antimigratory activity in a metastasis model as well as enhanced mutant myocilin degradation in a glaucoma model compared to BnIm.
Bioorganic & Medicinal Chemistry Letters | 2011
Bhaskar Reddy Kusuma; Adam S. Duerfeldt; Brian S. J. Blagg
Novobiocin analogs lacking labile glycosidic ether have been designed, synthesized and evaluated for Hsp90 inhibitory activity. Replacement of the synthetically complex noviose sugar with simple aromatic side chains produced analogs that maintain moderate cytotoxic activity against MCF7 and SkBR3 breast cancer cell-lines. Rationale for the preparation of des-noviose novobiocin analogs in addition to their synthesis and biological evaluation are presented herein.
Journal of Natural Products | 2016
Nathan P. Lavey; Jesse A. Coker; Eliza A. Ruben; Adam S. Duerfeldt
Caseinolytic protease P (ClpP) maintains essential roles in bacterial homeostasis. As such, both the inhibition and activation of this enzyme result in bactericidal activity, making ClpP a promising target for antibacterial drug development. Herein, we report the results of a fluorescence-based screen of ∼450 structurally diverse fungal and bacterial secondary metabolites. Sclerotiamide (1), a paraherquamide-related indolinone, was identified as the first non-peptide-based natural product activator of ClpP. Structure-activity relationships arising from the initial screen, preliminary biochemical evaluation of 1, and rationale for the exploitation of this chemotype to develop novel ClpP activators are presented.
Journal of Biological Chemistry | 2016
Xiao Jing Di; Ya Juan Wang; Dong Yun Han; Yan Lin Fu; Adam S. Duerfeldt; Brian S. J. Blagg; Ting Wei Mu
Proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors dictates their function in controlling neuronal inhibition in mammalian central nervous systems. However, as a multisubunit, multispan, integral membrane protein, even wild type subunits of GABAA receptors fold and assemble inefficiently in the endoplasmic reticulum (ER). Unassembled and misfolded subunits undergo ER-associated degradation (ERAD), but this degradation process remains poorly understood for GABAA receptors. Here, using the α1 subunits of GABAA receptors as a model substrate, we demonstrated that Grp94, a metazoan-specific Hsp90 in the ER lumen, uses its middle domain to interact with the α1 subunits and positively regulates their ERAD. OS-9, an ER-resident lectin, acts downstream of Grp94 to further recognize misfolded α1 subunits in a glycan-dependent manner. This delivers misfolded α1 subunits to the Hrd1-mediated ubiquitination and the valosin-containing protein-mediated extraction pathway. Repressing the initial ERAD recognition step by inhibiting Grp94 enhances the functional surface expression of misfolding-prone α1(A322D) subunits, which causes autosomal dominant juvenile myoclonic epilepsy. This study clarifies a Grp94-mediated ERAD pathway for GABAA receptors, which provides a novel way to finely tune their function in physiological and pathophysiological conditions.