Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam S. Lazorchak is active.

Publication


Featured researches published by Adam S. Lazorchak.


The EMBO Journal | 2008

The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C

Valeria Facchinetti; Weiming Ouyang; Hua Wei; Nelyn Soto; Adam S. Lazorchak; Christine M. Gould; Carolyn Lowry; Alexandra C. Newton; Yuxin Mao; Robert Qing Miao; William C. Sessa; Jun Qin; Pumin Zhang; Bing Su; Estela Jacinto

The target of rapamycin (TOR), as part of the rapamycin‐sensitive TOR complex 1 (TORC1), regulates various aspects of protein synthesis. Whether TOR functions in this process as part of TORC2 remains to be elucidated. Here, we demonstrate that mTOR, SIN1 and rictor, components of mammalian (m)TORC2, are required for phosphorylation of Akt and conventional protein kinase C (PKC) at the turn motif (TM) site. This TORC2 function is growth factor independent and conserved from yeast to mammals. TM site phosphorylation facilitates carboxyl‐terminal folding and stabilizes newly synthesized Akt and PKC by interacting with conserved basic residues in the kinase domain. Without TM site phosphorylation, Akt becomes protected by the molecular chaperone Hsp90 from ubiquitination‐mediated proteasome degradation. Finally, we demonstrate that mTORC2 independently controls the Akt TM and HM sites in vivo and can directly phosphorylate both sites in vitro. Our studies uncover a novel function of the TOR pathway in regulating protein folding and stability, processes that are most likely linked to the functions of TOR in protein synthesis.


Molecular and Cellular Biology | 2006

E2A and IRF-4/Pip Promote Chromatin Modification and Transcription of the Immunoglobulin κ Locus in Pre-B Cells

Adam S. Lazorchak; Mark S. Schlissel; Yuan Zhuang

ABSTRACT The immunoglobulin kappa light chain (Igκ) locus is regulated in a lineage- and stage-specific manner during B-cell development. The highly restricted timing of V to J gene recombination at the pre-B-cell stage is under the control of two enhancers, the intronic enhancer (κEi) and the 3′ enhancer (κE3′), flanking the constant exon. E2A transcription factors have been indicated to be directly involved in the regulation of Igκ locus activation. In this study, we utilize E2A-deficient pre-B cells to directly investigate the mechanism of E2A-mediated Igκ activation. We demonstrate that Igκ germ line transcription is severely impaired and recombination is blocked in the absence of E2A. Reconstitution of E2A −/− pre-B cells with inducible human E2A (E47R) is sufficient to promote chromatin modification of Igκ and rescue Igκ germ line transcription and Jκ gene recombinase accessibility. Furthermore, we show that increased E2A recruitment to κEi and κE3′ correlates with activation of Igκ in pre-B cells and that recruitment of E2A to κE3′ is in part dependent on the transcription factor IRF-4. Inhibition of IRF-4 expression in pre-B cells leads to a significant reduction of Igκ germ line transcription and enhancer acetylation. In the absence of E2A, increased IRF-4 expression is not sufficient to promote Igκ enhancer chromatin modification or transcription, suggesting that the sequential involvement of IRF-4 and E2A is necessary for the activation of the Igκ locus. Finally, we provide genetic evidence in the mouse that E2A gene dosage can influence the development of pre-B cells during the phase of Igκ gene activation.


Molecular Cell | 2010

Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells.

Adam S. Lazorchak; Dou Liu; Valeria Facchinetti; Annarita Di Lorenzo; William C. Sessa; David G. Schatz; Bing Su

Mammalian target of rapamycin (mTOR) is an important mediator of phosphoinositol-3-kinase (PI3K) signaling. PI3K signaling regulates B cell development, homeostasis, and immune responses. However, the function and molecular mechanism of mTOR-mediated PI3K signaling in B cells has not been fully elucidated. Here we show that Sin1, an essential component of mTOR complex 2 (mTORC2), regulates B cell development. Sin1 deficiency results in increased IL-7 receptor (il7r) and RAG recombinase (rag1 and rag2) gene expression, leading to enhanced pro-B cell survival and augmented V(D)J recombinase activity. We further show that Akt2 specifically mediates the Sin1-mTORC2 dependent suppression of il7r and rag gene expression in B cells by regulating FoxO1 phosphorylation. Finally, we demonstrate that the mTOR inhibitor rapamycin induces rag expression and promotes V(D)J recombination in B cells. Our study reveals that the Sin1/mTORC2-Akt2 signaling axis is a key regulator of FoxO1 transcriptional activity in B cells.


Journal of Biological Chemistry | 2011

mTOR Complex 2 Targets Akt for Proteasomal Degradation via Phosphorylation at the Hydrophobic Motif

You-Tong Wu; Weiming Ouyang; Adam S. Lazorchak; Dou Liu; Han-Ming Shen; Bing Su

The protein kinase Akt (also known as protein kinase B) is a critical signaling hub downstream of various cellular stimuli such as growth factors that control cell survival, growth, and proliferation. The activity of Akt is tightly regulated, and the aberrant activation of Akt is associated with diverse human diseases including cancer. Although it is well documented that the mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of the Akt hydrophobic motif (Ser-473 in Akt1) is essential for full Akt activation, it remains unclear whether this phosphorylation has additional roles in regulating Akt activity. In this study, we found that abolishing Akt Ser-473 phosphorylation stabilizes Akt following agonist stimulation. The Akt Ser-473 phosphorylation promotes a Lys-48-linked polyubiquitination of Akt, resulting in its rapid proteasomal degradation. Moreover, blockade of this proteasomal degradation pathway prolongs agonist-induced Akt activation. These data reveal that mTORC2 plays a central role in regulating the Akt protein life cycle by first stabilizing Akt protein folding through the turn motif phosphorylation and then by promoting Akt protein degradation through the hydrophobic motif phosphorylation. Taken together, this study reveals that the Akt Ser-473 phosphorylation-dependent ubiquitination and degradation is an important negative feedback regulation that specifically terminates Akt activation.


Journal of Immunology | 2006

E2A Promotes the Survival of Precursor and Mature B Lymphocytes

Adam S. Lazorchak; Jason Wojciechowski; Meifang Dai; Yuan Zhuang

The basic helix-loop-helix transcription factor E2A is an essential regulator of B lymphocyte lineage commitment and is required to activate the expression of numerous B lineage-specific genes. Studies involving ectopic expression of Id proteins, which inhibit E2A as well as other basic helix-loop-helix proteins such as HEB, suggest additional roles of E2A at later stages of B cell development. We use E2A-deficient and E2A and HEB double-deficient pre-B cell lines to directly assess the function of E2A and HEB in B cell development after lineage commitment. We show that, in contrast to the established role of E2A in lineage commitment, elimination of E2A and HEB in pre-B cell lines has only a modest negative impact on B lineage gene expression. However, E2A single and E2A and HEB double-deficient but not HEB single-deficient cell lines show dramatically enhanced apoptosis upon growth arrest. To address the possible role of E2A in the regulation of B cell survival in vivo, we crossed IFN-inducible Cre-transgenic mice to E2A conditional mice. Cre-mediated E2A deletion resulted in a block in bone marrow B cell development and a significant reduction in the proportion and total number of splenic B cells in these mice. We show that Cre-mediated deletion of E2A in adoptively transferred mature B cells results in the rapid depletion of the transferred population within 24 h of Cre induction. These results reveal that E2A is not required to maintain B cell fate but is essential in promoting pre-B and B cell survival.


European Journal of Immunology | 2012

Sin1 regulates Treg-cell development but is not required for T-cell growth and proliferation.

Xing Chang; Adam S. Lazorchak; Dou Liu; Bing Su

Mammalian Sin1 plays key roles in the regulation of mitogen‐activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling. Sin1 is an essential component of mTOR complex 2 (mTORC2). The functions of Sin1 and mTORC2 remain largely unknown in T cells. Here, we investigate Sin1 function in T cells using mice that lack Sin1 in the hematopoietic system. Sin1 deficiency blocks the mTORC2‐dependent Akt phosphorylation in T cells during development and activation. Sin1‐deficient T cells exhibit normal thymic cellularity and percentages of double‐negative, double‐positive, and single‐positive CD4+ and CD8+ thymocytes. Sin1 deficiency does not impair T‐cell receptor (TCR) induced growth and proliferation. Sin1 appears dispensable for in vitro CD4+ helper cell differentiation. However, Sin1 deficiency results in an increased proportion of Foxp3+ natural T‐regulatory (nTreg) cells in the thymus. The TGF‐β‐dependent differen‐tiation of CD4+ T cells in vitro is enhanced by the inhibition of mTOR but not by loss of Sin1 function. Our results reveal that Sin1 and mTORC2 are dispensable for the development and activation of T cells but play a role in nTreg‐cell differentiation.


Blood | 2012

Inhibition of the mTORC2 and chaperone pathways to treat leukemia

Fan Zhang; Adam S. Lazorchak; Dou Liu; Fangping Chen; Bing Su

Constitutive activation of the kinases Akt or protein kinase C (PKC) in blood cancers promotes tumor-cell proliferation and survival and is associated with poor patient survival. The mammalian target of rapamycin (mTOR) complex 2 (mTORC2) regulates the stability of Akt and conventional PKC (cPKC; PKCα and PKCβ) proteins by phosphorylating the highly conserved turn motif of these proteins. In cells that lack mTORC2 function, the turn motif phosphorylation of Akt and cPKC is abolished and therefore Akt and cPKC protein stability is impaired. However, the chaperone protein HSP90 can stabilize Akt and cPKC, partially rescuing the expression of these proteins. In the present study, we investigated the antitumor effects of inhibiting mTORC2 plus HSP90 in mouse and human leukemia cell models and show that the HSP90 inhibitor 17-allylaminogeldanamycin (17-AAG) preferentially inhibits Akt and cPKC expression and promotes cell death in mTORC2 deficient pre-B leukemia cells. Furthermore, we show that 17-AAG selectively inhibits mTORC2 deficient leukemia cell growth in vivo. Finally, we show that the mTOR inhibitors rapamycin and pp242 work together with 17-AAG to inhibit leukemia cell growth to a greater extent than either drug alone. These studies provide a mechanistic and clinical rationale to combine mTOR inhibitors with chaperone protein inhibitors to treat human blood cancers.


Protein & Cell | 2011

Perspectives on the role of mTORC2 in B lymphocyte development, immunity and tumorigenesis

Adam S. Lazorchak; Bing Su

Mammalian target of rapamycin complex 2 (mTORC2) is a key downstream mediator of phosphoinositol-3-kinase (PI3K) dependent growth factor signaling. In lymphocytes, mTORC2 has emerged as an important regulator of cell development, homeostasis and immune responses. However, our current understanding of mTORC2 functions and the molecular mechanisms regulating mTORC2 signaling in B and T cells are still largely incomplete. Recent studies have begun to shed light on this important pathway. We have previously reported that mTORC2 mediates growth factor dependent phosphorylation of Akt and facilitates Akt dependent phosphorylation and inactivation of transcription factors FoxO1 and FoxO3a. We have recently explored the functions of mTORC2 in B cells and show that mTORC2 plays a key role in regulating survival and immunoglobulin (Ig) gene recombination of bone marrow B cells through an Akt2-FoxO1 dependent mechanism. Ig recombination is suppressed in proliferating B cells to ensure that DNA double strand breaks are not generated in actively dividing cells. Our results raise the possibility that genetic or pharmacologic inhibition of mTORC2 may promote B cell tumor development as a result of inefficient suppression of Ig recombination in dividing B cells. We also propose a novel strategy to treat cancers based on our recent discovery that mTORC2 regulates Akt protein stability.


Nature Cell Biology | 2013

Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis

Pengda Liu; Wenjian Gan; Hiroyuki Inuzuka; Adam S. Lazorchak; Daming Gao; Omotooke Arojo; Dou Liu; Lixin Wan; Bo Zhai; Yonghao Yu; Min Yuan; Byeong Mo Kim; Shavali Shaik; Suchithra Menon; Steven P. Gygi; Tae Ho Lee; John M. Asara; Brendan D. Manning; John Blenis; Bing Su; Wenyi Wei


Journal of Biological Chemistry | 2004

Differential functions for the transcription factor E2A in positive and negative gene regulation in pre-B lymphocytes.

Stephen Greenbaum; Adam S. Lazorchak; Yuan Zhuang

Collaboration


Dive into the Adam S. Lazorchak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeria Facchinetti

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge