Brendan D. Manning
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brendan D. Manning.
Cell | 2007
Brendan D. Manning; Lewis C. Cantley
The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration.
Molecular Cell | 2002
Brendan D. Manning; Andrew R. Tee; M. Nicole Logsdon; John Blenis; Lewis C. Cantley
The S/T-protein kinases activated by phosphoinositide 3-kinase (PI3K) regulate a myriad of cellular processes. Here, we show that an approach using a combination of biochemistry and bioinformatics can identify substrates of these kinases. This approach identifies the tuberous sclerosis complex-2 gene product, tuberin, as a potential target of Akt/PKB. We demonstrate that, upon activation of PI3K, tuberin is phosphorylated on consensus recognition sites for PI3K-dependent S/T kinases. Moreover, Akt/PKB can phosphorylate tuberin in vitro and in vivo. We also show that S939 and T1462 of tuberin are PI3K-regulated phosphorylation sites and that T1462 is constitutively phosphorylated in PTEN(-/-) tumor-derived cell lines. Finally, we find that a tuberin mutant lacking the major PI3K-dependent phosphorylation sites can block the activation of S6K1, suggesting a means by which the PI3K-Akt pathway regulates S6K1 activity.
Cancer Cell | 2003
Ji Luo; Brendan D. Manning; Lewis C. Cantley
We apologize to the many laboratories whose contribution to this field could not be discussed or cited. Due to space limitations, many primary references were omitted. The authors were supported by a Howard Hughes Medical Institute Predoctoral Fellowship (J.L.), an American Cancer Society Postdoctoral Fellowship (B.D.M.), and NIH grant # CA89021, GM41890, and GM56203 (L.C.C.).
Current Biology | 2003
Andrew R. Tee; Brendan D. Manning; Philippe P. Roux; Lewis C. Cantley; John Blenis
BACKGROUND Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. RESULTS We show that the small G protein Rheb (Ras homolog enriched in brain) is a molecular target of TSC1/TSC2 that regulates mTOR signaling. Overexpression of Rheb activates 40S ribosomal protein S6 kinase 1 (S6K1) but not p90 ribosomal S6 kinase 1 (RSK1) or Akt. Furthermore, Rheb induces phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and causes 4E-BP1 to dissociate from eIF4E. This dissociation is completely sensitive to rapamycin (an mTOR inhibitor) but not wortmannin (a phosphoinositide 3-kinase [PI3K] inhibitor). Rheb also activates S6K1 during amino acid insufficiency via a rapamycin-sensitive mechanism, suggesting that Rheb participates in nutrient signaling through mTOR. Moreover, Rheb does not activate a S6K1 mutant that is unresponsive to mTOR-mediated signals, confirming that Rheb functions upstream of mTOR. Overexpression of the Tuberin-Hamartin heterodimer inhibits Rheb-mediated S6K1 activation, suggesting that Tuberin functions as a Rheb GTPase activating protein (GAP). Supporting this notion, TSC patient-derived Tuberin GAP domain mutants were unable to inactivate Rheb in vivo. Moreover, in vitro studies reveal that Tuberin, when associated with Hamartin, acts as a Rheb GTPase-activating protein. Finally, we show that membrane localization of Rheb is important for its biological activity because a farnesylation-defective mutant of Rheb stimulated S6K1 activation less efficiently. CONCLUSIONS We show that Rheb acts as a novel mediator of the nutrient signaling input to mTOR and is the molecular target of TSC1 and TSC2 within mammalian cells.
Molecular Cell | 2010
Katrin Düvel; Jessica L. Yecies; Suchithra Menon; Pichai Raman; Alex I. Lipovsky; Amanda Souza; Ellen Triantafellow; Qicheng Ma; Regina Gorski; Stephen Cleaver; Matthew G. Vander Heiden; Jeffrey P. MacKeigan; Peter Finan; Clary B. Clish; Leon O. Murphy; Brendan D. Manning
Aberrant activation of the mammalian target of rapamycin complex 1 (mTORC1) is a common molecular event in a variety of pathological settings, including genetic tumor syndromes, cancer, and obesity. However, the cell-intrinsic consequences of mTORC1 activation remain poorly defined. Through a combination of unbiased genomic, metabolomic, and bioinformatic approaches, we demonstrate that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidative arm of the pentose phosphate pathway, and de novo lipid biosynthesis. This is achieved through the activation of a transcriptional program affecting metabolic gene targets of hypoxia-inducible factor (HIF1alpha) and sterol regulatory element-binding protein (SREBP1 and SREBP2). We find that SREBP1 and 2 promote proliferation downstream of mTORC1, and the activation of these transcription factors is mediated by S6K1. Therefore, in addition to promoting protein synthesis, mTORC1 activates specific bioenergetic and anabolic cellular processes that are likely to contribute to human physiology and disease.
Biochemical Journal | 2008
Jingxiang Huang; Brendan D. Manning
TSC1 and TSC2 are the tumour-suppressor genes mutated in the tumour syndrome TSC (tuberous sclerosis complex). Their gene products form a complex that has become the focus of many signal transduction researchers. The TSC1-TSC2 (hamartin-tuberin) complex, through its GAP (GTPase-activating protein) activity towards the small G-protein Rheb (Ras homologue enriched in brain), is a critical negative regulator of mTORC1 (mammalian target of rapamycin complex 1). As mTORC1 activity controls anabolic processes to promote cell growth, it is exquisitely sensitive to alterations in cell growth conditions. Through numerous phosphorylation events, the TSC1-TSC2 complex has emerged as the sensor and integrator of these growth conditions, relaying signals from diverse cellular pathways to properly modulate mTORC1 activity. In the present review we focus on the molecular details of TSC1-TSC2 complex regulation and function as it relates to the control of Rheb and mTORC1.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Andrew R. Tee; Diane C. Fingar; Brendan D. Manning; David J. Kwiatkowski; Lewis C. Cantley; John Blenis
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder that occurs upon mutation of either the TSC1 or TSC2 genes, which encode the protein products hamartin and tuberin, respectively. Here, we show that hamartin and tuberin function together to inhibit mammalian target of rapamycin (mTOR)-mediated signaling to eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). First, coexpression of hamartin and tuberin repressed phosphorylation of 4E-BP1, resulting in increased association of 4E-BP1 with eIF4E; importantly, a mutant of TSC2 derived from TSC patients was defective in repressing phosphorylation of 4E-BP1. Second, the activity of S6K1 was repressed by coexpression of hamartin and tuberin, but the activity of rapamycin-resistant mutants of S6K1 were not affected, implicating mTOR in the TSC-mediated inhibitory effect on S6K1. Third, hamartin and tuberin blocked the ability of amino acids to activate S6K1 within nutrient-deprived cells, a process that is dependent on mTOR. These findings strongly implicate the tuberin-hamartin tumor suppressor complex as an inhibitor of mTOR and suggest that the formation of tumors within TSC patients may result from aberrantly high levels of mTOR-mediated signaling to downstream targets.
Biochemical Society Transactions | 2009
Jingxiang Huang; Brendan D. Manning
Akt/PKB (protein kinase B) both regulates and is regulated by the TSC (tuberous sclerosis complex) 1-TSC2 complex. Downstream of PI3K (phosphoinositide 3-kinase), Akt phosphorylates TSC2 directly on multiple sites. Although the molecular mechanism is not well understood, these phosphorylation events relieve the inhibitory effects of the TSC1-TSC2 complex on Rheb and mTORC1 [mTOR (mammalian target of rapamycin) complex] 1, thereby activating mTORC1 in response to growth factors. Through negative-feedback mechanisms, mTORC1 activity inhibits growth factor stimulation of PI3K. This is particularly evident in cells and tumours lacking the TSC1-TSC2 complex, where Akt signalling is severely attenuated due, at least in part, to constitutive activation of mTORC1. An additional level of complexity in the relationship between Akt and the TSC1-TSC2 complex has recently been uncovered. The growth-factor-stimulated kinase activity of mTORC2 [also known as the mTOR-rictor (rapamycin-insensitive companion of mTOR) complex], which normally enhances Akt signalling by phosphorylating its hydrophobic motif (Ser(473)), was found to be defective in cells lacking the TSC1-TSC2 complex. This effect on mTORC2 can be separated from the inhibitory effects of the TSC1-TSC2 complex on Rheb and mTORC1. The present review discusses our current understanding of the increasingly complex functional interactions between Akt, the TSC1-TSC2 complex and mTOR, which are fundamentally important players in a large variety of human diseases.
Journal of Cell Biology | 2004
Brendan D. Manning
Proper regulation of the phosphoinositide 3-kinase–Akt pathway is critical for the prevention of both insulin resistance and tumorigenesis. Many recent studies have characterized a negative feedback loop in which components of one downstream branch of this pathway, composed of the mammalian target of rapamycin and ribosomal S6 kinase, block further activation of the pathway through inhibition of insulin receptor substrate function. These findings form a novel basis for improved understanding of the pathophysiology of metabolic diseases (e.g., diabetes and obesity), tumor syndromes (e.g., tuberous sclerosis complex and Peutz-Jeghers syndrome), and human cancers.
Nature Cell Biology | 2013
Christian C. Dibble; Brendan D. Manning
Flux through metabolic pathways is inherently sensitive to the levels of specific substrates and products, but cellular metabolism is also managed by integrated control mechanisms that sense the nutrient and energy status of a cell or organism. The mechanistic target of rapamycin complex 1 (mTORC1), a protein kinase complex ubiquitous to eukaryotic cells, has emerged as a critical signalling node that links nutrient sensing to the coordinated regulation of cellular metabolism. Here, we discuss the role of mTORC1 as a conduit between cellular growth conditions and the anabolic processes that promote cell growth. The emerging network of signalling pathways through which mTORC1 integrates systemic signals (secreted growth factors) with local signals (cellular nutrients — amino acids, glucose and oxygen — and energy, ATP) is detailed. Our expanding understanding of the regulatory network upstream of mTORC1 provides molecular insights into the integrated sensing mechanisms by which diverse cellular signals converge to control cell physiology.