Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam S. Phillips is active.

Publication


Featured researches published by Adam S. Phillips.


Climate Dynamics | 2012

Uncertainty in climate change projections: the role of internal variability

Clara Deser; Adam S. Phillips; Vincent Bourdette; Haiyan Teng

Uncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000–2060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005–2060 in the CMIP3 multi-model ensemble.


Bulletin of the American Meteorological Society | 2015

The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability

Jennifer E. Kay; Clara Deser; Adam S. Phillips; A Mai; Cecile Hannay; Gary Strand; Julie M. Arblaster; Susan C. Bates; Gokhan Danabasoglu; James Edwards; Marika M. Holland; Paul J. Kushner; Jean-Francois Lamarque; David M. Lawrence; Keith Lindsay; A Middleton; Ernesto Munoz; Richard Neale; Keith W. Oleson; Lorenzo M. Polvani; Mariana Vertenstein

AbstractWhile internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindu...


Journal of Climate | 2004

Pacific Interdecadal Climate Variability: Linkages between the Tropics and the North Pacific during Boreal Winter since 1900

Clara Deser; Adam S. Phillips; James W. Hurrell

This study examines the tropical linkages to interdecadal climate fluctuations over the North Pacific during boreal winter through a comprehensive and physically based analysis of a wide variety of observational datasets spanning the twentieth century. Simple difference maps between epochs of high sea level pressure over the North Pacific (1900‐24 and 1947‐76) and epochs of low pressure (1925‐46 and 1977‐97) are presented for numerous climate variables throughout the tropical Indo-Pacific region, including rainfall, cloudiness, sea surface temperature (SST), and sea level pressure. The results support the notion that the Tropics play a key role in North Pacific interdecadal climate variability. In particular, SST anomalies in the tropical Indian Ocean and southeast Pacific Ocean, rainfall and cloudiness anomalies in the vicinity of the South Pacific convergence zone, stratus clouds in the eastern tropical Pacific, and sea level pressure differences between the tropical southeast Pacific and Indian Oceans all exhibit prominent interdecadal fluctuations that are coherent with those in sea level pressure over the North Pacific. The spatial patterns of the interdecadal tropical climate anomalies are compared with those associated with ENSO, a predominantly interannual phenomenon; in general, the two are similar with some differences in relative spatial emphasis. Finally, a published 194-yr coral record in the western tropical Indian Ocean is shown to compare favorably with the twentieth-century instrumental records, indicating the potential for extending knowledge of tropical interdecadal climate variability to earlier time periods.


Journal of Climate | 2006

Detection and Attribution of Twentieth-Century Northern and Southern African Rainfall Change

Martin P. Hoerling; James W. Hurrell; Jon Eischeid; Adam S. Phillips

The spatial patterns, time history, and seasonality of African rainfall trends since 1950 are found to be deducible from the atmosphere’s response to the known variations of global sea surface temperatures (SSTs). The robustness of the oceanic impact is confirmed through the diagnosis of 80 separate 50-yr climate simulations across a suite of atmospheric general circulation models. Drying over the Sahel during boreal summer is shown to be a response to warming of the South Atlantic relative to North Atlantic SST, with the ensuing anomalous interhemispheric SST contrast favoring a more southern position of the Atlantic intertropical convergence zone. Southern African drying during austral summer is shown to be a response to Indian Ocean warming, with enhanced atmospheric convection over those warm waters driving subsidence drying over Africa. The ensemble of greenhouse-gas-forced experiments, conducted as part of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, fails to simulate the pattern or amplitude of the twentieth-century African drying, indicating that the drought conditions were likely of natural origin. For the period 2000–49, the ensemble mean of the forced experiments yields a wet signal over the Sahel and a dry signal over southern Africa. These rainfall changes are physically consistent with a projected warming of the North Atlantic Ocean compared with the South Atlantic Ocean, and a further warming of the Indian Ocean. However, considerable spread exists among the individual members of the multimodel ensemble.


Journal of Climate | 2005

Tropical Atlantic Influence on European Heat Waves

Christophe Cassou; Laurent Terray; Adam S. Phillips

Abstract Diagnostics combining atmospheric reanalysis and station-based temperature data for 1950–2003 indicate that European heat waves can be associated with the occurrence of two specific summertime atmospheric circulation regimes. Evidence is presented that during the record warm summer of 2003, the excitation of these two regimes was significantly favored by the anomalous tropical Atlantic heating related to wetter-than-average conditions in both the Caribbean basin and the Sahel. Given the persistence of tropical Atlantic climate anomalies, their seasonality, and their associated predictability, the suggested tropical–extratropical Atlantic connection is encouraging for the prospects of long-range forecasting of extreme weather in Europe.


Journal of Climate | 2004

The Effects of North Atlantic SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part II: Direct and Indirect Components of the Response

Clara Deser; Gudrun Magnusdottir; R. Saravanan; Adam S. Phillips

The wintertime atmospheric circulation responses to observed patterns of North Atlantic sea surface temperature and sea ice cover trends in recent decades are studied by means of experiments with an atmospheric general circulation model. Here the relationship between the forced responses and the dominant pattern of internally generated atmospheric variability is focused on. The total response is partioned into a portion that projects onto the leading mode of internal variability (the indirect response) and a portion that is the residual from that projection (the direct response). This empirical decomposition yields physically meaningful patterns whose distinctive horizontal and vertical structures imply different governing mechanisms. The indirect response, which dominates the total geopotential height response, is hemispheric in scale with resemblance to the North Atlantic Oscillation or Northern Hemisphere annular mode, and equivalent barotropic in the vertical from the surface to the tropopause. In contrast, the direct response is localized to the vicinity of the surface thermal anomaly (SST or sea ice) and exhibits a baroclinic structure in the vertical, with a surface trough and upper-level ridge in the case of a positive heating anomaly, consistent with theoretical models of the linear baroclinic response to extratropical thermal forcing. Both components of the response scale linearly with respect to the amplitude of the forcing but nonlinearly with respect to the polarity of the forcing. The deeper vertical penetration of anomalous heating compared to cooling is suggested to play a role in the nonlinearity of the response to SST forcing.


Journal of Climate | 2009

A U.S. Clivar project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results

Siegfried D. Schubert; David S. Gutzler; Hailan Wang; Aiguo Dai; T. Delworth; Clara Deser; Kirsten L. Findell; Rong Fu; Wayne Higgins; Martin P. Hoerling; Ben P. Kirtman; Randal D. Koster; Arun Kumar; David M. Legler; Dennis P. Lettenmaier; Bradfield Lyon; Víctor Magaña; Kingtse C. Mo; Sumant Nigam; Philip Pegion; Adam S. Phillips; Roger Pulwarty; David Rind; Alfredo Ruiz-Barradas; Jae Schemm; Richard Seager; Ronald E. Stewart; Max J. Suarez; Jozef Syktus; Mingfang Ting

Abstract The U.S. Climate Variability and Predictability (CLIVAR) working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land–atmosphere feedbacks on regional drought. The runs were carried out with five different atmospheric general circulation models (AGCMs) and one coupled atmosphere–ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino–Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic multidecadal oscillation (AMO), and a global trend pattern. One of the key findings is that all of the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific for...


Journal of Climate | 2012

ENSO and Pacific Decadal Variability in the Community Climate System Model Version 4

Clara Deser; Adam S. Phillips; Robert A. Tomas; Yuko Okumura; Michael A. Alexander; James D. Scott; Young-Oh Kwon; Masamichi Ohba

AbstractThis study presents an overview of the El Nino–Southern Oscillation (ENSO) phenomenon and Pacific decadal variability (PDV) simulated in a multicentury preindustrial control integration of the NCAR Community Climate System Model version 4 (CCSM4) at nominal 1° latitude–longitude resolution. Several aspects of ENSO are improved in CCSM4 compared to its predecessor CCSM3, including the lengthened period (3–6 yr), the larger range of amplitude and frequency of events, and the longer duration of La Nina compared to El Nino. However, the overall magnitude of ENSO in CCSM4 is overestimated by ~30%. The simulated ENSO exhibits characteristics consistent with the delayed/recharge oscillator paradigm, including correspondence between the lengthened period and increased latitudinal width of the anomalous equatorial zonal wind stress. Global seasonal atmospheric teleconnections with accompanying impacts on precipitation and temperature are generally well simulated, although the wintertime deepening of the Al...


Journal of Climate | 2016

The Pacific Decadal Oscillation, Revisited

Matthew Newman; Michael A. Alexander; Toby R. Ault; Kim M. Cobb; Clara Deser; Emanuele Di Lorenzo; Nathan J. Mantua; Arthur J. Miller; Shoshiro Minobe; Hisashi Nakamura; Niklas Schneider; Daniel J. Vimont; Adam S. Phillips; James D. Scott; Catherine A. Smith

AbstractThe Pacific decadal oscillation (PDO), the dominant year-round pattern of monthly North Pacific sea surface temperature (SST) variability, is an important target of ongoing research within the meteorological and climate dynamics communities and is central to the work of many geologists, ecologists, natural resource managers, and social scientists. Research over the last 15 years has led to an emerging consensus: the PDO is not a single phenomenon, but is instead the result of a combination of different physical processes, including both remote tropical forcing and local North Pacific atmosphere–ocean interactions, which operate on different time scales to drive similar PDO-like SST anomaly patterns. How these processes combine to generate the observed PDO evolution, including apparent regime shifts, is shown using simple autoregressive models of increasing spatial complexity. Simulations of recent climate in coupled GCMs are able to capture many aspects of the PDO, but do so based on a balance of ...


Journal of Climate | 2014

Projecting North American Climate over the Next 50 Years: Uncertainty due to Internal Variability*

Clara Deser; Adam S. Phillips; Michael A. Alexander; Brian V. Smoliak

AbstractThis study highlights the relative importance of internally generated versus externally forced climate trends over the next 50 yr (2010–60) at local and regional scales over North America in two global coupled model ensembles. Both ensembles contain large numbers of integrations (17 and 40): each of which is subject to identical anthropogenic radiative forcing (e.g., greenhouse gas increase) but begins from a slightly different initial atmospheric state. Thus, the diversity of projected climate trends within each model ensemble is due solely to intrinsic, unpredictable variability of the climate system. Both model ensembles show that natural climate variability superimposed upon forced climate change will result in a range of possible future trends for surface air temperature and precipitation over the next 50 yr. Precipitation trends are particularly subject to uncertainty as a result of internal variability, with signal-to-noise ratios less than 2. Intrinsic atmospheric circulation variability i...

Collaboration


Dive into the Adam S. Phillips's collaboration.

Top Co-Authors

Avatar

Clara Deser

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

James W. Hurrell

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Isla R. Simpson

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

John T. Fasullo

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Allan Frei

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debjani Ghatak

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gokhan Danabasoglu

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge