Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Stenman is active.

Publication


Featured researches published by Adam Stenman.


Human Molecular Genetics | 2015

Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing

John W. Kunstman; C. Christofer Juhlin; Gerald Goh; Taylor C. Brown; Adam Stenman; James M. Healy; Jill C. Rubinstein; Murim Choi; Nimrod Kiss; Carol Nelson-Williams; Shrikant Mane; David L. Rimm; Manju L. Prasad; Anders Höög; Jan Zedenius; Catharina Larsson; Reju Korah; Richard P. Lifton; Tobias Carling

Anaplastic thyroid carcinoma (ATC) is a frequently lethal malignancy that is often unresponsive to available therapeutic strategies. The tumorigenesis of ATC and its relationship to the widely prevalent well-differentiated thyroid carcinomas are unclear. We have analyzed 22 cases of ATC as well as 4 established ATC cell lines using whole-exome sequencing. A total of 2674 somatic mutations (121/sample) were detected. Ontology analysis revealed that the majority of variants aggregated in the MAPK, ErbB and RAS signaling pathways. Mutations in genes related to malignancy not previously associated with thyroid tumorigenesis were observed, including mTOR, NF1, NF2, MLH1, MLH3, MSH5, MSH6, ERBB2, EIF1AX and USH2A; some of which were recurrent and were investigated in 24 additional ATC cases and 8 ATC cell lines. Somatic mutations in established thyroid cancer genes were detected in 14 of 22 (64%) tumors and included recurrent mutations in BRAF, TP53 and RAS-family genes (6 cases each), as well as PIK3CA (2 cases) and single cases of CDKN1B, CDKN2C, CTNNB1 and RET mutations. BRAF V600E and RAS mutations were mutually exclusive; all ATC cell lines exhibited a combination of mutations in either BRAF and TP53 or NRAS and TP53. A hypermutator phenotype in two cases with >8 times higher mutational burden than the remaining mean was identified; both cases harbored unique somatic mutations in MLH mismatch-repair genes. This first comprehensive exome-wide analysis of the mutational landscape of ATC identifies novel genes potentially associated with ATC tumorigenesis, some of which may be targets for future therapeutic intervention.


The Journal of Clinical Endocrinology and Metabolism | 2015

Whole-Exome Sequencing Characterizes the Landscape of Somatic Mutations and Copy Number Alterations in Adrenocortical Carcinoma

C. Christofer Juhlin; Gerald Goh; James M. Healy; Annabelle L. Fonseca; Ute I. Scholl; Adam Stenman; John W. Kunstman; Taylor C. Brown; John D. Overton; Shrikant Mane; Carol Nelson-Williams; Anna-Carinna Suttorp; Matthias Haase; Murim Choi; Joseph Schlessinger; David L. Rimm; Anders Höög; Manju L. Prasad; Reju Korah; Catharina Larsson; Richard P. Lifton; Tobias Carling

CONTEXT Adrenocortical carcinoma (ACC) is a rare and lethal malignancy with a poorly defined etiology, and the molecular genetics of ACC are incompletely understood. OBJECTIVE To utilize whole-exome sequencing for genetic characterization of the underlying somatic mutations and copy number alterations present in ACC. DESIGN Screening for somatic mutation events and copy number alterations (CNAs) was performed by comparative analysis of tumors and matched normal samples from 41 patients with ACC. RESULTS In total, 966 nonsynonymous somatic mutations were detected, including 40 tumors with a mean of 16 mutations per sample and one tumor with 314 mutations. Somatic mutations in ACC-associated genes included TP53 (8/41 tumors, 19.5%) and CTNNB1 (4/41, 9.8%). Genes with potential disease-causing mutations included GNAS, NF2, and RB1, and recurrently mutated genes with unknown roles in tumorigenesis comprised CDC27, SCN7A, and SDK1. Recurrent CNAs included amplification at 5p15.33 including TERT (6/41, 14.6%) and homozygous deletion at 22q12.1 including the Wnt repressors ZNRF3 and KREMEN1 (4/41 9.8% and 3/41, 7.3%, respectively). Somatic mutations in ACC-established genes and recurrent ZNRF3 and TERT loci CNAs were mutually exclusive in the majority of cases. Moreover, gene ontology identified Wnt signaling as the most frequently mutated pathway in ACCs. CONCLUSIONS These findings highlight the importance of Wnt pathway dysregulation in ACC and corroborate the finding of homozygous deletion of Wnt repressors ZNRF3 and KREMEN1. Overall, mutations in either TP53 or CTNNB1 as well as focal CNAs at the ZNRF3 or TERT loci denote mutually exclusive events, suggesting separate mechanisms underlying the development of these tumors.


JAMA Oncology | 2017

Clinical Characterization of the Pheochromocytoma and Paraganglioma Susceptibility Genes SDHA, TMEM127, MAX, and SDHAF2 for Gene-Informed Prevention

Birke Bausch; Francesca Schiavi; Ying Ni; Jenny Welander; Attila Patócs; Joanne Ngeow; Ulrich F. Wellner; Angelica Malinoc; Elisa Taschin; Giovanni Barbon; Virginia Lanza; Peter Söderkvist; Adam Stenman; Catharina Larsson; Fredrika Svahn; Jinlian Chen; Jessica Marquard; Merav Fraenkel; Martin A. Walter; Mariola Pęczkowska; Aleksander Prejbisz; Barbara Jarzab; Kornelia Hasse-Lazar; Stephan Petersenn; Lars C. Moeller; Almuth Meyer; Nicole Reisch; Arnold Trupka; Christoph Brase; Matthias Galiano

Importance Effective cancer prevention is based on accurate molecular diagnosis and results of genetic family screening, genotype-informed risk assessment, and tailored strategies for early diagnosis. The expanding etiology for hereditary pheochromocytomas and paragangliomas has recently included SDHA, TMEM127, MAX, and SDHAF2 as susceptibility genes. Clinical management guidelines for patients with germline mutations in these 4 newly included genes are lacking. Objective To study the clinical spectra and age-related penetrance of individuals with mutations in the SDHA, TMEM127, MAX, and SDHAF2 genes. Design, Setting, and Patients This study analyzed the prospective, longitudinally followed up European-American-Asian Pheochromocytoma-Paraganglioma Registry for prevalence of SDHA, TMEM127, MAX, and SDHAF2 germline mutation carriers from 1993 to 2016. Genetic predictive testing and clinical investigation by imaging from neck to pelvis was offered to mutation-positive registrants and their relatives to clinically characterize the pheochromocytoma/paraganglioma diseases associated with mutations of the 4 new genes. Main Outcomes and Measures Prevalence and spectra of germline mutations in the SDHA, TMEM127, MAX, and SDHAF2 genes were assessed. The clinical features of SDHA, TMEM127, MAX, and SDHAF2 disease were characterized. Results Of 972 unrelated registrants without mutations in the classic pheochromocytoma- and paraganglioma-associated genes (632 female [65.0%] and 340 male [35.0%]; age range, 8-80; mean [SD] age, 41.0 [13.3] years), 58 (6.0%) carried germline mutations of interest, including 29 SDHA, 20 TMEM127, 8 MAX, and 1 SDHAF2. Fifty-three of 58 patients (91%) had familial, multiple, extra-adrenal, and/or malignant tumors and/or were younger than 40 years. Newly uncovered are 7 of 63 (11%) malignant pheochromocytomas and paragangliomas in SDHA and TMEM127 disease. SDHA disease occurred as early as 8 years of age. Extra-adrenal tumors occurred in 28 mutation carriers (48%) and in 23 of 29 SDHA mutation carriers (79%), particularly with head and neck paraganglioma. MAX disease occurred almost exclusively in the adrenal glands with frequently bilateral tumors. Penetrance in the largest subset, SDHA carriers, was 39% at 40 years of age and is statistically different in index patients (45%) vs mutation-carrying relatives (13%; P < .001). Conclusions and Relevance The SDHA, TMEM127, MAX, and SDHAF2 genes may contribute to hereditary pheochromocytoma and paraganglioma. Genetic testing is recommended in patients at clinically high risk if the classic genes are mutation negative. Gene-specific prevention and/or early detection requires regular, systematic whole-body investigation.


Genes, Chromosomes and Cancer | 2015

Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene.

C. Christofer Juhlin; Adam Stenman; Felix Haglund; Victoria E. Clark; Taylor C. Brown; Jacob F. Baranoski; Kaya Bilguvar; Gerald Goh; Jenny Welander; Fredrika Svahn; Jill C. Rubinstein; Stefano Caramuta; Katsuhito Yasuno; Murat Gunel; Oliver Gimm; Peter Söderkvist; Manju L. Prasad; Reju Korah; Richard P. Lifton; Tobias Carling

As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole‐exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis‐related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well‐established cancer gene lysine (K)‐specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome‐sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D‐mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development.


Genes, Chromosomes and Cancer | 2016

HRAS mutation prevalence and associated expression patterns in pheochromocytoma

Adam Stenman; Jenny Welander; Ida Gustavsson; Laurent Brunaud; Peter Söderkvist; Oliver Gimm; C. Christofer Juhlin; Catharina Larsson

Pheochromocytomas (PCC) and abdominal paragangliomas (PGL) display a highly diverse genetic background and recent gene expression profiling studies have shown that PCC and PGL (together PPGL) alter either kinase signaling pathways or the pseudo‐hypoxia response pathway dependent of the genetic composition. Recurrent mutations in the Harvey rat sarcoma viral oncogene homolog (HRAS) have recently been verified in sporadic PPGLs. In order to further establish the HRAS mutation frequency and to characterize the associated expression profiles of HRAS mutated tumors, 156 PPGLs for exon 2 and 3 hotspot mutations in the HRAS gene was screened, and compared with microarray‐based gene expression profiles for 93 of the cases. The activating HRAS mutations G13R, Q61R, and Q61K were found in 10/142 PCC (7.0%) and a Q61L mutation was revealed in 1/14 PGL (7.1%). All HRAS mutated cases included in the mRNA expression profiling grouped in Cluster 2, and 21 transcripts were identified as altered when comparing the mutated tumors with 91 HRAS wild‐type PPGL. Somatic HRAS mutations were not revealed in cases with known PPGL susceptibility gene mutations and all HRAS mutated cases were benign. The HRAS mutation prevalence of all PPGL published up to date is 5.2% (49/950), and 8.8% (48/548) among cases without a known PPGL susceptibility gene mutation. The findings support a role of HRAS mutations as a somatic driver event in benign PPGL without other known susceptibility gene mutations. HRAS mutated PPGL cluster together with NF1‐ and RET‐mutated tumors associated with activation of kinase‐signaling pathways.


BMC Cancer | 2017

A novel FOXO1-mediated dedifferentiation blocking role for DKK3 in adrenocortical carcinogenesis

Joyce Y. Cheng; Taylor C. Brown; Timothy D. Murtha; Adam Stenman; C. Christofer Juhlin; Catharina Larsson; James M. Healy; Manju L. Prasad; Wolfram T. Knoefel; Andreas Krieg; Ute I. Scholl; Reju Korah; Tobias Carling

BackgroundDysregulated WNT signaling dominates adrenocortical malignancies. This study investigates whether silencing of the WNT negative regulator DKK3 (Dickkopf-related protein 3), an implicated adrenocortical differentiation marker and an established tumor suppressor in multiple cancers, allows dedifferentiation of the adrenal cortex.MethodsWe analyzed the expression and regulation of DKK3 in human adrenocortical carcinoma (ACC) by qRT-PCR, immunofluorescence, promoter methylation assay, and copy number analysis. We also conducted functional studies on ACC cell lines, NCI-H295R and SW-13, using siRNAs and enforced DKK3 expression to test DKK3’s role in blocking dedifferentiation of adrenal cortex.ResultsWhile robust expression was observed in normal adrenal cortex, DKK3 was down-regulated in the majority (>75%) of adrenocortical carcinomas (ACC) tested. Both genetic (gene copy loss) and epigenetic (promoter methylation) events were found to play significant roles in DKK3 down-regulation in ACCs. While NCI-H295R cells harboring β-catenin activating mutations failed to respond to DKK3 silencing, SW-13 cells showed increased motility and reduced clonal growth. Conversely, exogenously added DKK3 also increased motility of SW-13 cells without influencing their growth. Enforced over-expression of DKK3 in SW-13 cells resulted in slower cell growth by an extension of G1 phase, promoted survival of microcolonies, and resulted in significant impairment of migratory and invasive behaviors, largely attributable to modified cell adhesions and adhesion kinetics. DKK3-over-expressing cells also showed increased expression of Forkhead Box Protein O1 (FOXO1) transcription factor, RNAi silencing of which partially restored the migratory proficiency of cells without interfering with their viability.ConclusionsDKK3 suppression observed in ACCs and the effects of manipulation of DKK3 expression in ACC cell lines suggest a FOXO1-mediated differentiation-promoting role for DKK3 in the adrenal cortex, silencing of which may allow adrenocortical dedifferentiation and malignancy.


Surgery | 2016

DNA copy amplification and overexpression of SLC12A7 in adrenocortical carcinoma

Taylor C. Brown; C. Christofer Juhlin; James M. Healy; Adam Stenman; Jill C. Rubinstein; Reju Korah; Tobias Carling

BACKGROUND Overexpression of Solute carrier family 12 member 7 (SLC12A7) promotes tumor aggressiveness in various cancers. Previous studies have identified the 5p15.33 region, containing the SLC12A7 locus, as being amplified frequently in adrenocortical carcinoma (ACC). Copy number amplifications (CNAs) may alter gene expression levels and occur frequently in ACC; however, SLC12A7 gene amplifications or expression levels have not been studied in ACC. METHODS Fifty-five cases of clinically well-characterized ACCs were recruited for this study. Whole-exome sequencing was used to predict CNAs in 19 samples. CNA analysis was performed on an expanded cohort of 26 samples with the use of TaqMan Copy Number Assays. SLC12A7 mRNA expression was analyzed in 32 samples with real-time quantitative polymerase chain reaction and protein expression was assessed by immunohistochemistry. SLC12A7 CNAs and expression patterns were evaluated for correlation with patient and tumor characteristics. RESULTS Whole-exome sequencing and TaqMan Copy Number Assays demonstrated SLC12A7 amplifications in 68.4% and 65.4% of ACCs tested, respectively. Furthermore, SLC12A7 copy gains were associated with increased gene expression (P < .05) and non-functional tumors (P < .05). SLC12A7 gene expression levels were increased in ACCs compared with normal adrenal tissue (P < .05). CONCLUSION SLC12A7 gene amplification and overexpression occurs frequently in ACCs and may represent a novel molecular event associated with ACC.


Surgery | 2016

Chromosome 19 amplification correlates with advanced disease in adrenocortical carcinoma

Jill C. Rubinstein; Taylor C. Brown; Gerald Goh; C. Christofer Juhlin; Adam Stenman; Reju Korah; Tobias Carling

BACKGROUND Familial syndromes with specific genetic drivers account for a subset of adrenocortical carcinomas (ACCs), but the genomic underpinnings of sporadic cases remain poorly understood. Recent advances in copy number variation (CNV) prediction from exome sequencing are facilitating exploration of genomic rearrangements common to these carcinomas. METHODS ACC and matched, nontumor samples underwent exome sequencing. CNVs were predicted using coverage-depth comparison. Clinicopathologic characteristics of amplification- and deletion-dominant samples were compared and pathway enrichment analysis performed for regions with significant variation. RESULTS CNVs are distributed broadly across the ACC genome. Individual signatures demonstrate amplification or deletion dominance. Areas of recurrent amplification include chromosomes 5, 12, 19, and 20, whereas chromosomes 1, 10, 18, and 22 are deletion prone. Large-scale amplification of chromosome 19 occurred in 12 of 19 cases (63%), including 6 of 8 amplification-dominant samples (75%) and was associated with stage III/IV disease (P = .002). Genes within this amplified region are overrepresented among the adrenal hyperplasia and steroid biosynthesis pathways (P = 4.2(-5) and 2.5(-5), respectively). CONCLUSION CNV detection via exome sequencing allows high-resolution cataloging of structural variations in ACC. Large-scale, recurrent amplifications encompassing known adrenal-specific gene pathways correlate with tumor stage. Further functional analysis of individual genes within these regions could provide mechanistic insight into specific drivers underlying pathogenesis and progression of ACC.


PLOS ONE | 2016

Human Cytochrome P450 2W1 Is Not Expressed in Adrenal Cortex and Is Only Rarely Expressed in Adrenocortical Carcinomas.

Paola Nolé; Britt Duijndam; Adam Stenman; C. Christofer Juhlin; Mikael Kozyra; Catharina Larsson; Magnus Ingelman-Sundberg; Inger Johansson

Human cytochome P450 2W1 (CYP2W1) enzyme is expressed in fetal colon and in colon tumors. The level of expression is higher in colon metastases than in the parent tumors and the enzyme is a possible drug target for treatment of colorectal cancer, as demonstrated in mouse xenograft studies. A previous study published in this journal reported that CYP2W1 is highly expressed in normal and transformed adrenal tissue. However, adrenal expression of CYP2W1 protein was not seen in previous studies in our research group. To clarify this inconsistency, we have used qRT-PCR and Western blotting with CYP2W1-specific antibodies to probe a panel of 27 adrenocortical carcinomas and 35 normal adrenal cortex samples. CYP2W1 mRNA expression is seen in all samples. However, significant CYP2W1 protein expression was found in only one tumor sample (a testosterone-producing adrenocortical carcinoma) and not in any normal tissue. Differences in the specificity of the CYP2W1 antibodies used in the two studies may explain the apparent discrepancy. We conclude that normal adrenal tissue lacks P450 2W1 enzyme expression; also, adrenocortical carcinomas generally do not express the enzyme. This information thus underline the colon cancer specificity of CYP2W1 enzyme expression and has implications for the development of anti-colon cancer therapies based on CYP2W1 as a drug target, since 2W1-dependent bioactivation of prodrugs for CYP2W1 will not take place in normal adrenal tissue or other non-transformed tissues.


Endocrine-related Cancer | 2015

TERT promoter mutations are rare in parathyroid tumors

Felix Haglund; Christofer Carl Juhlin; Taylor C. Brown; Mehran Ghaderi; Tiantian Liu; Adam Stenman; Andrii Dinets; Manju L. Prasad; Reju Korah; Dawei Xu; Tobias Carling; Catharina Larsson

Research Letter for Endocrine-Related Cancer 1 2 TERT promoter mutations are rare in parathyroid tumors 3 4 Felix Haglund* 1 , Carl Christofer Juhlin* 1,2,3 , Taylor Brown 2,3 , Mehran Ghaderi 1 , Tiantian 5 Liu 4 , Adam Stenman 1 , Andrii Dinets 1 , Manju Prasad 5 , Reju Korah 2,3 , Dawei Xu 6 , 6 Tobias Carling 2,3 and Catharina Larsson 1 7 *These authors contributed equally to this study. 8 9 Author affiliations: 10

Collaboration


Dive into the Adam Stenman's collaboration.

Top Co-Authors

Avatar

C. Christofer Juhlin

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Catharina Larsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fredrika Svahn

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge