Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Christofer Juhlin is active.

Publication


Featured researches published by C. Christofer Juhlin.


eLife | 2015

Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism

Ute I. Scholl; Gabriel Stölting; Carol Nelson-Williams; Alfred A. Vichot; Murim Choi; Erin Loring; Manju L. Prasad; Gerald Goh; Tobias Carling; C. Christofer Juhlin; Ivo Quack; Lars Christian Rump; Anne Thiel; Marc B. Lande; Britney G Frazier; Majid Rasoulpour; David L Bowlin; Christine B. Sethna; Howard Trachtman; Christoph Fahlke; Richard P. Lifton

Many Mendelian traits are likely unrecognized owing to absence of traditional segregation patterns in families due to causation by de novo mutations, incomplete penetrance, and/or variable expressivity. Genome-level sequencing can overcome these complications. Extreme childhood phenotypes are promising candidates for new Mendelian traits. One example is early onset hypertension, a rare form of a global cause of morbidity and mortality. We performed exome sequencing of 40 unrelated subjects with hypertension due to primary aldosteronism by age 10. Five subjects (12.5%) shared the identical, previously unidentified, heterozygous CACNA1HM1549V mutation. Two mutations were demonstrated to be de novo events, and all mutations occurred independently. CACNA1H encodes a voltage-gated calcium channel (CaV3.2) expressed in adrenal glomerulosa. CACNA1HM1549V showed drastically impaired channel inactivation and activation at more hyperpolarized potentials, producing increased intracellular Ca2+, the signal for aldosterone production. This mutation explains disease pathogenesis and provides new insight into mechanisms mediating aldosterone production and hypertension. DOI: http://dx.doi.org/10.7554/eLife.06315.001


Human Molecular Genetics | 2015

Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing

John W. Kunstman; C. Christofer Juhlin; Gerald Goh; Taylor C. Brown; Adam Stenman; James M. Healy; Jill C. Rubinstein; Murim Choi; Nimrod Kiss; Carol Nelson-Williams; Shrikant Mane; David L. Rimm; Manju L. Prasad; Anders Höög; Jan Zedenius; Catharina Larsson; Reju Korah; Richard P. Lifton; Tobias Carling

Anaplastic thyroid carcinoma (ATC) is a frequently lethal malignancy that is often unresponsive to available therapeutic strategies. The tumorigenesis of ATC and its relationship to the widely prevalent well-differentiated thyroid carcinomas are unclear. We have analyzed 22 cases of ATC as well as 4 established ATC cell lines using whole-exome sequencing. A total of 2674 somatic mutations (121/sample) were detected. Ontology analysis revealed that the majority of variants aggregated in the MAPK, ErbB and RAS signaling pathways. Mutations in genes related to malignancy not previously associated with thyroid tumorigenesis were observed, including mTOR, NF1, NF2, MLH1, MLH3, MSH5, MSH6, ERBB2, EIF1AX and USH2A; some of which were recurrent and were investigated in 24 additional ATC cases and 8 ATC cell lines. Somatic mutations in established thyroid cancer genes were detected in 14 of 22 (64%) tumors and included recurrent mutations in BRAF, TP53 and RAS-family genes (6 cases each), as well as PIK3CA (2 cases) and single cases of CDKN1B, CDKN2C, CTNNB1 and RET mutations. BRAF V600E and RAS mutations were mutually exclusive; all ATC cell lines exhibited a combination of mutations in either BRAF and TP53 or NRAS and TP53. A hypermutator phenotype in two cases with >8 times higher mutational burden than the remaining mean was identified; both cases harbored unique somatic mutations in MLH mismatch-repair genes. This first comprehensive exome-wide analysis of the mutational landscape of ATC identifies novel genes potentially associated with ATC tumorigenesis, some of which may be targets for future therapeutic intervention.


Endocrine-related Cancer | 2007

Parafibromin immunoreactivity: its use as an additional diagnostic marker for parathyroid tumor classification

C. Christofer Juhlin; A Villablanca; K Sandelin; Felix Haglund; J Nordenström; L Forsberg; R Bränström; T Obara; Andrew Arnold; Catharina Larsson; Anders Höög

Parafibromin is a protein product derived from the hyperparathyroidism 2(HRPT2) tumor suppressor geneand its inactivation has been coupled to familial and sporadic forms of parathyroid malignancy. In this study, we have conducted immunohistochemistry on 33 parathyroid carcinomas (22 unequivocal and 11 equivocal) using four parafibromin antibodies directed to different parts of the protein. Furthermore, for a fraction of cases, the immunohistochemical results were compared with known HRPT2 mutational status. Our findings show that 68% (15 out of 22) of the unequivocal carcinomas exhibited reduced expression of parafibromin while the 25 sporadic adenomas used as controls were entirely positive for parafibromin expression. Additionally, three out of the six carcinomas with known HRPT2 mutations showed reduced expression of parafibromin. Using all four antibodies, comparable results were obtained on the cellular level in individual tumors suggesting that there exists no epitope of choice in parafibromin immunohistochemistry. The results agree with the demonstration of a approximately 60 kDa product preferentially in the nuclear fraction by western blot analysis. We conclude that parafibromin immunohistochemistry could be used as an additional marker for parathyroid tumor classification, where positive samples have low risk of malignancy, whereas samples with reduced expression could be either carcinomas or rare cases of adenomas likely carrying an HRPT2 mutation.


The Journal of Clinical Endocrinology and Metabolism | 2014

Rare Germline Mutations Identified by Targeted Next-Generation Sequencing of Susceptibility Genes in Pheochromocytoma and Paraganglioma

Jenny Welander; Adam Andreasson; C. Christofer Juhlin; Roger W. Wiseman; Anders Höög; Catharina Larsson; Oliver Gimm; Peter Söderkvist

CONTEXT Pheochromocytomas and paragangliomas have a highly diverse genetic background, with a third of the cases carrying a germline mutation in 1 of 14 identified genes. OBJECTIVE This study aimed to evaluate next-generation sequencing for more efficient genetic testing of pheochromocytoma and paraganglioma and to establish germline and somatic mutation frequencies for all known susceptibility genes. DESIGN A targeted next-generation sequencing approach on an Illumina MiSeq instrument was used for a mutation analysis in 86 unselected pheochromocytoma and paraganglioma tumor samples. The study included the genes EGLN1, EPAS1, KIF1Bβ, MAX, MEN1, NF1, RET, SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, and VHL. RESULTS were verified in tumor and constitutional DNA with Sanger sequencing. RESULTS In all cases with clinical syndromes or known germline mutations, a mutation was detected in the expected gene. Among 68 nonfamilial tumors, 32 mutations were identified in 28 of the samples (41%), including germline mutations in EGLN1, KIF1Bβ, SDHA, SDHB, and TMEM127 and somatic mutations in EPAS1, KIF1Bβ, MAX, NF1, RET, and VHL, including one double monoallelic EPAS1 mutation. CONCLUSIONS Targeted next-generation sequencing proved to be fast and cost effective for the genetic analysis of pheochromocytoma and paraganglioma. More than half of the tumors harbored mutations in the investigated genes. Notably, 7% of the apparently sporadic cases carried germline mutations, highlighting the importance of comprehensive genetic testing. KIF1Bβ, which previously has not been investigated in a large cohort, appears to be an equally important tumor suppressor as MAX and TMEM127 and could be considered for genetic testing of these patients.


The Journal of Clinical Endocrinology and Metabolism | 2015

Whole-Exome Sequencing Characterizes the Landscape of Somatic Mutations and Copy Number Alterations in Adrenocortical Carcinoma

C. Christofer Juhlin; Gerald Goh; James M. Healy; Annabelle L. Fonseca; Ute I. Scholl; Adam Stenman; John W. Kunstman; Taylor C. Brown; John D. Overton; Shrikant Mane; Carol Nelson-Williams; Anna-Carinna Suttorp; Matthias Haase; Murim Choi; Joseph Schlessinger; David L. Rimm; Anders Höög; Manju L. Prasad; Reju Korah; Catharina Larsson; Richard P. Lifton; Tobias Carling

CONTEXT Adrenocortical carcinoma (ACC) is a rare and lethal malignancy with a poorly defined etiology, and the molecular genetics of ACC are incompletely understood. OBJECTIVE To utilize whole-exome sequencing for genetic characterization of the underlying somatic mutations and copy number alterations present in ACC. DESIGN Screening for somatic mutation events and copy number alterations (CNAs) was performed by comparative analysis of tumors and matched normal samples from 41 patients with ACC. RESULTS In total, 966 nonsynonymous somatic mutations were detected, including 40 tumors with a mean of 16 mutations per sample and one tumor with 314 mutations. Somatic mutations in ACC-associated genes included TP53 (8/41 tumors, 19.5%) and CTNNB1 (4/41, 9.8%). Genes with potential disease-causing mutations included GNAS, NF2, and RB1, and recurrently mutated genes with unknown roles in tumorigenesis comprised CDC27, SCN7A, and SDK1. Recurrent CNAs included amplification at 5p15.33 including TERT (6/41, 14.6%) and homozygous deletion at 22q12.1 including the Wnt repressors ZNRF3 and KREMEN1 (4/41 9.8% and 3/41, 7.3%, respectively). Somatic mutations in ACC-established genes and recurrent ZNRF3 and TERT loci CNAs were mutually exclusive in the majority of cases. Moreover, gene ontology identified Wnt signaling as the most frequently mutated pathway in ACCs. CONCLUSIONS These findings highlight the importance of Wnt pathway dysregulation in ACC and corroborate the finding of homozygous deletion of Wnt repressors ZNRF3 and KREMEN1. Overall, mutations in either TP53 or CTNNB1 as well as focal CNAs at the ZNRF3 or TERT loci denote mutually exclusive events, suggesting separate mechanisms underlying the development of these tumors.


Cancer | 2014

TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA

Na Wang; Tiantian Liu; Anastasios Sofiadis; C. Christofer Juhlin; Jan Zedenius; Anders Höög; Catharina Larsson; Dawei Xu

The telomerase reverse transcriptase (TERT) promoter mutations C228T and C250T have been found in many malignancies, including in thyroid carcinomas. However, it is unclear how early these mutations occur in thyroid tumorigenesis.


Endocrine Pathology | 2010

Parafibromin and APC as Screening Markers for Malignant Potential in Atypical Parathyroid Adenomas

C. Christofer Juhlin; Inga-Lena Nilsson; Kenth Johansson; Felix Haglund; Andrea Villablanca; Anders Höög; Catharina Larsson

The identification of parathyroid carcinomas is based upon histopathological criteria in which an invasive growth pattern or distant metastasis is demonstrated. A dilemma arises when tumours present with atypical histopathological features but lack direct evidence of malignancy. Recently, reduced expression or loss of the tumour suppressor proteins parafibromin and adenomatous polyposis coli (APC) has been associated with parathyroid malignancy. We report results from APC and parafibromin expression analyses by immunohistochemistry and Western blot in five cases of atypical adenoma, a single case of carcinoma and 54 adenomas without atypical features. Complete loss of APC immunoreactivity and reduced expression of parafibromin was evident in two of the atypical adenomas and in the parathyroid carcinoma. By contrast, all adenomas displayed APC expression, including two cases with hyperparathyroidism 2 gene (HRPT2) mutations and loss of parafibromin expression. We conclude that loss of APC is a frequent molecular event in atypical adenomas and carcinomas, but not in adenomas. Following verification in an independent material, APC could become a valuable tool when assessing parathyroid tumours in the clinical setting. Furthermore, the molecular resemblance of atypical adenomas with carcinoma concerning parafibromin and APC expression indicates that atypical adenomas should be subjects to watchful follow-up.


PLOS ONE | 2010

Frequent Promoter Hypermethylation of the APC and RASSF1A Tumour Suppressors in Parathyroid Tumours

C. Christofer Juhlin; Nimrod Kiss; Andrea Villablanca; Felix Haglund; Jörgen Nordenström; Anders Höög; Catharina Larsson

Background Parathyroid adenomas constitute the most common entity in primary hyperparathyroidism, and although recent advances have been made regarding the underlying genetic cause of these lesions, very little data on epigenetic alterations in this tumour type exists. In this study, we have determined the levels of promoter methylation regarding the four tumour suppressor genes APC, RASSF1A, p16INK4A and RAR-β in parathyroid adenomas. In addition, the levels of global methylation were assessed by analyzing LINE-1 repeats. Methodology/Principal Findings The sample collection consisted of 55 parathyroid tumours with known HRPT2 and/or MEN1 genotypes. Using Pyrosequencing analysis, we demonstrate APC promoter 1A and RASSF1A promoter hypermethylation in the majority of parathyroid tumours (71% and 98%, respectively). Using TaqMan qRT-PCR, all tumours analyzed displayed lower RASSF1A mRNA expression and higher levels of total APC mRNA than normal parathyroid, the latter of which was largely conferred by augmented APC 1B transcription levels. Hypermethylation of p16INK4A was demonstrated in a single adenoma, whereas RAR-β hypermethylation was not observed in any sample. Moreover, based on LINE-1 analyses, parathyroid tumours exhibited global methylation levels within the range of non-neoplastic parathyroid tissues. Conclusions/Significance The results demonstrate that APC and RASSF1A promoter hypermethylation are common events in parathyroid tumours. While RASSF1A mRNA levels were found downregulated in all tumours investigated, APC gene expression was retained through APC 1B mRNA levels. These findings suggest the involvement of the Ras signaling pathway in parathyroid tumorigenesis. Additionally, in contrast to most other human cancers, parathyroid tumours were not characterized by global hypomethylation, as parathyroid tumours exhibited LINE-1 methylation levels similar to that of normal parathyroid tissues.


Endocrine-related Cancer | 2014

The activating TERT promoter mutation C228T is recurrent in subsets of adrenal tumors

Tiantian Liu; Taylor C. Brown; C. Christofer Juhlin; Adam Andreasson; Na Wang; James M. Healy; Manju L. Prasad; Reju Korah; Tobias Carling; Dawei Xu; Catharina Larsson

The telomerase reverse transcriptase gene (TERT) encodes the reverse transcriptase component of the telomerase complex, which is essential for telomere stabilization and cell immortalization. Recent studies have demonstrated a transcriptional activation role for the TERT promoter mutations C228T and C250T in many human cancers, as well as a role in aggressive disease with potential clinical applications. Although telomerase activation is known in adrenal tumors, the underlying mechanisms are not established. We assessed C228T and C250T TERT mutations by direct Sanger sequencing in tumors of the adrenal gland, and further evaluated potential associations with clinical parameters and telomerase activation. A total of 199 tumors were evaluated, including 34 adrenocortical carcinomas (ACC), 47 adrenocortical adenomas (ACA), 105 pheochromocytomas (PCC; ten malignant and 95 benign), and 13 abdominal paragangliomas (PGL; nine malignant and four benign). TERT expression levels were determined by quantitative RT-PCR. The C228T mutation was detected in 4/34 ACCs (12%), but not in any ACA (P=0.028). C228T was also observed in one benign PCC and in one metastatic PGL. The C250T mutation was not observed in any case. In the ACC and PGL groups, TERT mutation-positive cases exhibited TERT expression, indicating telomerase activation; however, since expression was also revealed in TERT WT cases, this could denote additional mechanisms of TERT activation. To conclude, the TERT promoter mutation C228T is a recurrent event associated with TERT expression in ACCs, but rarely occurs in PGL and PCC. The involvement of the TERT gene in ACC represents a novel mutated gene in this entity.


Genes, Chromosomes and Cancer | 2015

Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene.

C. Christofer Juhlin; Adam Stenman; Felix Haglund; Victoria E. Clark; Taylor C. Brown; Jacob F. Baranoski; Kaya Bilguvar; Gerald Goh; Jenny Welander; Fredrika Svahn; Jill C. Rubinstein; Stefano Caramuta; Katsuhito Yasuno; Murat Gunel; Oliver Gimm; Peter Söderkvist; Manju L. Prasad; Reju Korah; Richard P. Lifton; Tobias Carling

As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole‐exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis‐related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well‐established cancer gene lysine (K)‐specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome‐sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D‐mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development.

Collaboration


Dive into the C. Christofer Juhlin's collaboration.

Top Co-Authors

Avatar

Catharina Larsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Anders Höög

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Stenman

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inga-Lena Nilsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge