Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adamantios Arampatzis is active.

Publication


Featured researches published by Adamantios Arampatzis.


The Journal of Experimental Biology | 2007

Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude

Adamantios Arampatzis; Kiros Karamanidis; Kirsten Albracht

SUMMARY Tendons are able to remodel their mechanical and morphological properties in response to mechanical loading. However, there is little information about the effects of controlled modulation in cyclic strain magnitude applied to the tendon on the adaptation of tendons properties in vivo. The present study investigated whether the magnitude of the mechanical load induced as cyclic strain applied to the Achilles tendon may have a threshold in order to trigger adaptation effects on tendon mechanical and morphological properties. Twenty-one adults (experimental group, N=11; control group, N=10) participated in the study. The participants of the experimental group exercised one leg at low-magnitude tendon strain (2.85±0.99%) and the other leg at high-magnitude tendon strain (4.55±1.38%) of similar frequency and volume. After 14 weeks of exercise intervention we found a decrease in strain at a given tendon force, an increase in tendon-aponeurosis stiffness and tendon elastic modulus and a region-specific hypertrophy of the Achilles tendon only in the leg exercised at high strain magnitude. These findings provide evidence of the existence of a threshold or set-point at the applied strain magnitude at which the transduction of the mechanical stimulus may influence the tensional homeostasis of the tendons. The results further show that the mechanical load exerted on the Achilles tendon during the low-strain-magnitude exercise is not a sufficient stimulus for triggering further adaptation effects on the Achilles tendon than the stimulus provided by the mechanical load applied during daily activities.


The Journal of Experimental Biology | 2006

Influence of the muscle-tendon unit's mechanical and morphological properties on running economy

Adamantios Arampatzis; Gianpiero De Monte; Kiros Karamanidis; Gaspar Morey-Klapsing; Savvas Stafilidis; Gert-Peter Brüggemann

SUMMARY The purpose of this study was to test the hypothesis that runners having different running economies show differences in the mechanical and morphological properties of their muscle-tendon units (MTU) in the lower extremities. Twenty eight long-distance runners (body mass: 76.8±6.7 kg, height: 182±6 cm, age: 28.1±4.5 years) participated in the study. The subjects ran on a treadmill at three velocities (3.0, 3.5 and 4.0 m s-1) for 15 min each. The \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \({\dot{V}}_{\mathrm{O}_{2}}\) \end{document} consumption was measured by spirometry. At all three examined velocities the kinematics of the left leg were captured whilst running on the treadmill using a high-speed digital video camera operating at 250 Hz. Furthermore the runners performed isometric maximal voluntary plantarflexion and knee extension contractions at eleven different MTU lengths with their left leg on a dynamometer. The distal aponeuroses of the gastrocnemius medialis (GM) and vastus lateralis (VL) were visualised by ultrasound during plantarflexion and knee extension, respectively. The morphological properties of the GM and VL (fascicle length, angle of pennation, and thickness) were determined at three different lengths for each MTU. A cluster analysis was used to classify the subjects into three groups according to their \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \({\dot{V}}_{\mathrm{O}_{2}}\) \end{document} consumption at all three velocities (high running economy, N=10; moderate running economy, N=12; low running economy, N=6). Neither the kinematic parameters nor the morphological properties of the GM and VL showed significant differences between groups. The most economical runners showed a higher contractile strength and a higher normalised tendon stiffness (relationship between tendon force and tendon strain) in the triceps surae MTU and a higher compliance of the quadriceps tendon and aponeurosis at low level tendon forces. It is suggested that at low level forces the more compliant quadriceps tendon and aponeurosis will increase the force potential of the muscle while running and therefore the volume of active muscle at a given force generation will decrease.


The Journal of Experimental Biology | 2005

Mechanical and morphological properties of different muscle–tendon units in the lower extremity and running mechanics: effect of aging and physical activity

Kiros Karamanidis; Adamantios Arampatzis

SUMMARY The objectives of this work were (i) to investigate whether chronic endurance running is a sufficient stimulus to counteract the age-related changes in the mechanical and morphological properties of human triceps surae (TS) and quadriceps femoris (QF) muscle–tendon units (MTUs) by comparing runners and non-active subjects at different ages (young and old), (ii) to identify adaptational phenomena in running mechanics due to age-related changes in the mechanical and morphological properties of the TS and QF MTUs, and finally (iii) to examine whether chronic endurance-running exercise is associated with adaptational effects on running characteristics in old and young adults. The investigation was conducted on 30 old and 19 young adult males divided into two subgroups according to their running activity: endurance-runners vs non-active. To analyse the properties of the MTUs, all subjects performed isometric maximal voluntary (MVC) ankle plantarflexion and knee extension contractions at 11 different MTU lengths on a dynamometer. The activation of the TS and QF during MVC was estimated by surface electromyography. The gastrocnemius medialis and the vastus lateralis and their distal aponeuroses were visualized by ultrasonography at rest and during MVC, respectively. Ground reaction forces and kinematic data were recorded during running trials at 2.7 m s–1. The TS and QF MTU capacities were reduced with aging (lower muscle strength and lower tendon stiffness). Runners and non-active subjects had similar MTU properties, suggesting that chronic endurance-running exercise does not counteract the age-related degeneration of the MTUs. Runners showed a higher mechanical advantage for the QF MTU while running (lower gear ratio) compared to non-active subjects, indicating a task-specific adaptation even at old age. Older adults reacted to the reduced capacities of their MTUs by increasing running safety (higher duty factor, lower flight time) and benefitting from a mechanical advantage for the TS MTU, lower rate of force generation and force generation per meter distance. We suggest that the improvement in running mechanics in the older adults happens due to a perceptual motor recalibration and a feed-forward adaptation of the motor task aimed at decreasing the disparity between the reduced capacity of the MTUs and the running effort.


Journal of Biomechanics | 2010

Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain

Adamantios Arampatzis; Andreas Peper; Stefanie Bierbaum; Kirsten Albracht

The purpose of the current study in combination with our previous published data (Arampatzis et al., 2007) was to examine the effects of a controlled modulation of strain magnitude and strain frequency applied to the Achilles tendon on the plasticity of tendon mechanical and morphological properties. Eleven male adults (23.9 ± 2.2 yr) participated in the study. The participants exercised one leg at low magnitude tendon strain (2.97 ± 0.47%), and the other leg at high tendon strain magnitude (4.72 ± 1.08%) of similar frequency (0.5 Hz, 1s loading, 1s relaxation) and exercise volume (integral of the plantar flexion moment over time) for 14 weeks, 4 days per week, 5 sets per session. The exercise volume was similar to the intervention of our earlier study (0.17 Hz frequency; 3s loading, 3s relaxation) allowing a direct comparison of the results. Before and after the intervention ankle joint moment has been measured by a dynamometer, tendon-aponeurosis elongation by ultrasound and cross-sectional area of the Achilles tendon by magnet resonance images (MRI). We found a decrease in strain at a given tendon force, an increase in tendon-aponeurosis stiffness and tendon elastic modulus of the Achilles tendon only in the leg exercised at high strain magnitude. The cross-sectional area (CSA) of the Achilles tendon did not show any statistically significant (P > 0.05) differences to the pre-exercise values in both legs. The results indicate a superior improvement in tendon properties (stiffness, elastic modulus and CSA) at the low frequency (0.17 Hz) compared to the high strain frequency (0.5 Hz) protocol. These findings provide evidence that the strain magnitude applied to the Achilles tendon should exceed the value, which occurs during habitual activities to trigger adaptational effects and that higher tendon strain duration per contraction leads to superior tendon adaptational responses.


Medicine and Science in Sports and Exercise | 2003

Symmetry and Reproducibility of Kinematic Parameters during Various Running Techniques

Kiros Karamanidis; Adamantios Arampatzis; Gert-Peter Brüggemann

PURPOSE This study examined the validity of the assumption of lower-extremity kinematic parameter reproducibility and symmetry during running with different velocities and stride frequencies. METHODS Each of 12 female long-distance runners ran on a treadmill in combinations of three different velocities (2.5, 3.0, and 3.5 m.s-1) and three different stride frequencies (preferred and +/- 10% from preferred). The left and right sides of the athletes were filmed using video cameras placed orthogonally to the sagittal plane. A total number of three step cycles for each running condition were recorded (250 Hz). For each side of the body, 19 sagittal kinematic parameters from the lower extremity were evaluated. RESULTS Intraclass correlation coefficients (ICC) for both legs were high (generally > 0.80). Only the angular velocity parameters demonstrated correlation values below 0.70. The symmetry index for the linear and angular displacement parameters and the contact times during all running techniques were less than 8%, whereas those for the angular velocity parameters and flight times were higher than 15%. CONCLUSION The present results suggested that the degree of reproducibility and symmetry of kinematic data do not vary with a deliberate change in running technique but rather depend on the parameter itself. With respect to the economy of data analysis, the present findings indicate that recording a single monolateral trial would provide reproducible and symmetric values for most kinematic parameters.


Journal of Biomechanics | 2010

Footwear affects the gearing at the ankle and knee joints during running

Bjoern Braunstein; Adamantios Arampatzis; P. Eysel; Gert-Peter Brüggemann

The objective of the study was to investigate the adjustment of running mechanics by wearing five different types of running shoes on tartan compared to barefoot running on grass focusing on the gearing at the ankle and knee joints. The gear ratio, defined as the ratio of the moment arm of the ground reaction force (GRF) to the moment arm of the counteracting muscle tendon unit, is considered to be an indicator of joint loading and mechanical efficiency. Lower extremity kinematics and kinetics of 14 healthy volunteers were quantified three dimensionally and compared between running in shoes on tartan and barefoot on grass. Results showed no differences for the gear ratios and resultant joint moments for the ankle and knee joints across the five different shoes, but showed that wearing running shoes affects the gearing at the ankle and knee joints due to changes in the moment arm of the GRF. During barefoot running the ankle joint showed a higher gear ratio in early stance and a lower ratio in the late stance, while the gear ratio at the knee joint was lower during midstance compared to shod running. Because the moment arms of the counteracting muscle tendon units did not change, the determinants of the gear ratios were the moment arms of the GRFs. The results imply higher mechanical stress in shod running for the knee joint structures during midstance but also indicate an improved mechanical advantage in force generation for the ankle extensors during the push-off phase.


Journal of Strength and Conditioning Research | 2004

The effect of drop jump starting height and contact time on power, work performed, and moment of force.

Mark Walsh; Adamantios Arampatzis; Falk Schade; Gert-Peter Brüggemann

&NA; Walsh, M., A. Arampatzis, F. Schade, and G.‐P. Brüggemann. The effect of drop jump starting height and contact time on power, work performed, and moment of force. J. Strength Cond. Res. 18(3):561–566. 2004.—The purposes of this study are (a) to examine the effects of contact time manipulation on jump parameters and (b) to examine the interaction between starting height changes and contact time changes on important jump parameters. Fifteen male athletes performed a series of drop jumps from heights of 20, 40, and 60 cm. The instructions given to the subjects were (a) “jump as high as you can” and (b) “jump high a little faster than your previous jump.” Jumps were performed at each height until the athlete could not achieve a shorter ground contact time. The data were divided into 5 groups where group 1 was made up of the longest ground contact times of each athlete and groups 2–4 were composed of progressively shorter contact times, with group 5 having the shortest contact times. The jumps of group 3 produced the highest maximum and mean mechanical power (p <0.05) during the positive phase of the drop jumps regardless of starting jump height. The vertical takeoff velocities for the first 3 groups did not show significant (p < 0.05) differences. These results indicate that the manipulation of jump technique plays larger role than jump height in the manipulation of important jump parameters.


Journal of Biomechanics | 2008

Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo

Kirsten Albracht; Adamantios Arampatzis; Vasilios Baltzopoulos

The purpose of the present study was to investigate whether it is possible to predict the individual muscle volumes within the triceps surae (TS) muscle group by means of easily measurable parameters based on a theoretical consideration. A further objective was to verify the use of the available literature data to assess the contribution of each muscle of the group to the entire TS volume or physiological cross-sectional-area (PCSA). Therefore, magnetic resonance images of the right calf of 13 male subjects were acquired and each muscle of the TS was reconstructed. Muscle length (l(m)), the maximum anatomical cross-sectional-area (ACSA(max)) and muscle volume were obtained from the 3D models. To assess the PCSA, fascicle length was determined by ultrasonography. In general, muscle volume can be expressed as a fraction of the product of ACSA(max) and l(m). The size of the fraction depends on muscle shape and its coefficient of variance among the examined population was considerable low (soleus 6%, gastrocnemius 4% and gastrocnemius lateralis 7%) in the present study. The product of ACSA(max) and l(m) was, therefore, suitable to assess muscle volume (root mean squares, RMS 4-7%). Further, the soleus, gastrocnemius medialis and gastrocnemius lateralis accounted on average for about 52+/-3%, 32+/-2% and 16+/-2% of the total TS volume and 62+/-5%, 26+/-3% and 12+/-2% of the entire TS PCSA, respectively. The coefficient of variance of the relative portions were 5-10% for muscle volume and 8-17% for the PCSA.


Journal of Electromyography and Kinesiology | 2003

The effect of falling height on muscle activity and foot motion during landings.

Adamantios Arampatzis; Gaspar Morey-Klapsing; Gert-Peter Brüggemann

The aims of this study were: (a) to examine the effect of falling height on the kinematics of the tibiotalar, talonavicular and calcaneocuboid joints and (b) to study the influence of falling height on the muscle activity of the leg during landings. Six female gymnasts (height: 1.63 +/- 0.04 m, weight: 58.21 +/- 3.46 kg) participated in this study. All six gymnasts carried out barefoot landings, falling from 1.0, 1.5 and 2.0 m height onto a mat. Three genlocked digital high speed video cameras (250 Hz) captured the motion of the left shank and foot. Surface electromyography (EMG) was used to measure muscle activity (1000 Hz) from five muscles (gastrocnemius medialis, tibialis anterior, peroneus longus, vastus lateralis and hamstrings) of the left leg. The kinematics of the tibiotalar, talonavicular and calcaneocuboid joints were studied. The lower-leg and the foot were modelled by means of a multi-body system, comprising seven rigid bodies. The falling height does not show any influence on the kinematics neither of the tibiotalar nor of the talonavicular joints during landing. The eversion at the calcaneocuboid joint increases with increasing falling height. When augmenting falling height, the myoelectric activity of the muscles of the lower limb increases as well during the pre-activation phase as during the landing itself. The muscles of the lower extremities are capable of stabilizing the tibiotalar and the talonavicular joints actively, restricting their maximal motion by means of a higher activation before and after touchdown. Maximal eversion at the calcaneocuboid joint increases about 52% when landing from 2.0 m.


Journal of Sports Sciences | 2007

Muscle – tendon unit mechanical and morphological properties and sprint performance

Savvas Stafilidis; Adamantios Arampatzis

Abstract The objective of this study was to determine whether sprint performance is related to the mechanical (elongation – force relationship of the tendon and aponeurosis, muscle strength) and morphological (fascicle length, pennation angle, muscle thickness) properties of the quadriceps femoris and triceps surae muscle – tendon units. Two groups of sprinters (slow, n = 11; fast, n = 17) performed maximal isometric knee extension and plantar flexion contractions on a dynamometer at 11 different muscle – tendon unit lengths. Elongation of the tendon and aponeurosis of the gastrocnemius medialis and the vastus lateralis was measured using ultrasonography. We observed no significant differences in maximal joint moments at the ankle and knee joints or morphological properties of the gastrocnemius medialis and vastus lateralis between groups (P > 0.05). The fast group exhibited greater elongation of the vastus lateralis tendon and aponeurosis at a given tendon force, and greater maximal elongation of the vastus lateralis tendon and aponeurosis during maximum voluntary contraction (P < 0.05). Furthermore, maximal elongation of the vastus lateralis tendon and aponeurosis showed a significant correlation with 100-m sprint times (r = −0.567, P = 0.003). For the elongation – force relationship at the gastrocnemius medialis tendon and aponeurosis, the two groups recorded similar values. It is suggested that the greater elongation of the vastus lateralis tendon and aponeurosis of the fast group benefits energy storage and return as well as the shortening velocity of the muscle – tendon unit.

Collaboration


Dive into the Adamantios Arampatzis's collaboration.

Top Co-Authors

Avatar

Gert-Peter Brüggemann

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar

Kiros Karamanidis

London South Bank University

View shared research outputs
Top Co-Authors

Avatar

Sebastian Bohm

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Falk Mersmann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lida Mademli

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar

Antonis Ekizos

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Alessandro Santuz

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Arno Schroll

Humboldt University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge