Alessandro Santuz
Humboldt University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessandro Santuz.
International Journal of Neural Systems | 2017
Alessandro Santuz; Antonis Ekizos; Lars Janshen; Vasilios Baltzopoulos; Adamantios Arampatzis
We investigated the influence of three different high-pass (HP) and low-pass (LP) filtering conditions and a Gaussian (GNMF) and inverse-Gaussian (IGNMF) non-negative matrix factorization algorithm on the extraction of muscle synergies from myoelectric signals during human walking and running. To evaluate the effects of signal recording and processing on the outcomes, we analyzed the intraday and interday computation reliability. Results show that the IGNMF achieved a significantly higher reconstruction quality and on average needs one less synergy to sufficiently reconstruct the original signals compared to the GNMF. For both factorizations, the HP with a cut-off frequency of 250[Formula: see text]Hz significantly reduces the number of synergies. We identified the filter configuration of fourth order, HP 50[Formula: see text]Hz and LP 20[Formula: see text]Hz as the most suitable to minimize the combination of fundamental synergies, providing a higher reliability across all filtering conditions even if HP 250[Formula: see text]Hz is excluded. Defining a fundamental synergy as a single-peaked activation pattern, for walking and running we identified five and six fundamental synergies, respectively using both algorithms. The variability in combined synergies produced by different filtering conditions and factorization methods on the same data set suggests caution when attributing a neurophysiological nature to the combined synergies.
Scientific Reports | 2018
Alessandro Santuz; Antonis Ekizos; Nils Eckardt; Armin Kibele; Adamantios Arampatzis
The need to move over uneven terrain is a daily challenge. In order to face unexpected perturbations due to changes in the morphology of the terrain, the central nervous system must flexibly modify its control strategies. We analysed the local dynamic stability and the modular organisation of muscle activation (muscle synergies) during walking and running on an even- and an uneven-surface treadmill. We hypothesized a reduced stability during uneven-surface locomotion and a reorganisation of the modular control. We found a decreased stability when switching from even- to uneven-surface locomotion (p < 0.001 in walking, p = 0.001 in running). Moreover, we observed a substantial modification of the time-dependent muscle activation patterns (motor primitives) despite a general conservation of the time-independent coefficients (motor modules). The motor primitives were considerably wider in the uneven-surface condition. Specifically, the widening was significant in both the early (+40.5%, p < 0.001) and late swing (+7.7%, p = 0.040) phase in walking and in the weight acceptance (+13.6%, p = 0.006) and propulsion (+6.0%, p = 0.041) phase in running. This widening highlighted an increased motor output’s robustness (i.e. ability to cope with errors) when dealing with the unexpected perturbations. Our results confirmed the hypothesis that humans adjust their motor control strategies’ timing to deal with unsteady locomotion.
The Journal of Experimental Biology | 2016
Lars Janshen; Alessandro Santuz; Antonis Ekizos; Adamantios Arampatzis
ABSTRACT The neuromuscular control of human movement can be described by a set of muscle synergies factorized from myoelectric signals. There is some evidence that the selection, activation and flexible combination of these basic activation patterns are of a neural origin. We investigated the muscle synergies during incline and level walking to evaluate changes in the modular organization of neuromuscular control related to changes in the mechanical demands. Our results revealed five fundamental (not further factorizable) synergies for both walking conditions but with different frequencies of appearance of the respective synergies during incline compared with level walking. Low similarities across conditions were observed in the timing of the activation patterns (motor primitives) and the weightings of the muscles within the respective elements (motor modules) for the synergies associated with the touchdown, mid-stance and early push-off phase. The changes in neuromuscular control could be attributed to changes in the mechanical demands in support, propulsion and medio-lateral stabilization of the body during incline compared with level walking. Our findings provide further evidence that the central nervous system flexibly uses a consistent set of neural control elements with a flexible temporal recruitment and modifications of the relative muscle weightings within each element to provide stable locomotion under varying mechanical demands during walking. Summary: Differences in muscle synergies during incline and level walking provide further evidence of the flexible use of a consistent set of neural elements in human neuromuscular control.
Frontiers in Physiology | 2017
Alessandro Santuz; Antonis Ekizos; Lars Janshen; Vasilios Baltzopoulos; Adamantios Arampatzis
For most of our history, we predominantly ran barefoot or in minimalist shoes. The advent of modern footwear, however, might have introduced alterations in the motor control of running. The present study investigated shod and barefoot running under the perspective of the modular organization of muscle activation, in order to help addressing the neurophysiological factors underlying human locomotion. On a treadmill, 20 young and healthy inexperienced barefoot runners ran shod and barefoot at preferred speed (2.8 ± 0.4 m/s). Fundamental synergies, containing the time-dependent activation coefficients (motor primitives) and the time-invariant muscle weightings (motor modules), were extracted from 24 ipsilateral electromyographic activities using non-negative matrix factorization. In shod running, the average foot strike pattern was a rearfoot strike, while in barefoot running it was a mid-forefoot strike. In both conditions, five fundamental synergies were enough to describe as many gait cycle phases: weight acceptance, propulsion, arm swing, early swing and late swing. We found the motor primitives to be generally shifted earlier in time during the stance-related phases and later in the swing-related ones in barefoot running. The motor primitive describing the propulsion phase was significantly of shorter duration (peculiarity confirmed by the analysis of the spinal motor output). The arm swing primitive, instead, was significantly wider in the barefoot condition. The motor modules demonstrated analogous organization with some significant differences in the propulsion, arm swing and late swing synergies. Other than to the trivial absence of shoes, the differences might be deputed to the lower ankle gear ratio (and the consequent increased system instability) and to the higher recoil capabilities of the longitudinal foot arch during barefoot compared to shod running.
The Journal of Experimental Biology | 2018
Antonis Ekizos; Alessandro Santuz; Adamantios Arampatzis
ABSTRACT The current study investigates the effect of altering the point of force application (PFA) from the rearfoot towards the fore of the foot on the metabolic energy consumption and the influence of transitioning to this technique over a short or a longer timeframe. The participants were randomly assigned into two experimental and one control group: a short-term intervention group (STI, N=17; two training sessions), a long-term intervention group (LTI, N=10; 14-week gradual transition) and a control group (CG, N=11). Data were collected at two running velocities (2.5 and 3.0 m s−1). The cost coefficient (i.e. energy required per unit of vertical ground reaction force; J N−1) decreased (P<0.001) after both interventions due to a more anterior PFA during running (STI: 12%, LTI: 11%), but led to a higher (P<0.001) rate of force generation (STI: 17%, LTI: 15.2%). Dynamic stability of running showed a significant (P<0.001) decrease in the STI (2.1%), but no differences (P=0.673) in the LTI. The rate of metabolic energy consumption increased in the STI (P=0.038), but remained unchanged in the LTI (P=0.660). The CG had no changes. These results demonstrate that the cost coefficient was successfully decreased following an alteration in the running technique towards a more anterior PFA. However, the energy consumption remained unchanged because of a simultaneous increase in rate of force generation due to a decreased contact time per step. The increased instability found during the short-term intervention and its neutralization after the long-term intervention indicates a role of motor control errors in the economy of running after acute alterations in habitual running execution. Summary: The authors describe two interventions that successfully decreased the cost coefficient and the counterbalancing effect of the rate of force generation. Furthermore, they report how stability can affect the economy of running.
Frontiers in Physiology | 2018
Antonis Ekizos; Alessandro Santuz; Arno Schroll; Adamantios Arampatzis
The maximum Lyapunov exponent (MLE) has often been suggested as the prominent measure for evaluation of dynamic stability of locomotion in pathological and healthy population. Although the popularity of the MLE has increased in the last years, there is scarce information on the reliability of the method, especially during running. The purpose of the current study was, thus, to examine the reliability of the MLE during both walking and running. Sixteen participants walked and ran on a treadmill completing two measurement blocks (i.e., two trials per day for three consecutive days per block) separated by 2 months on average. Six different marker-sets on the trunk were analyzed. Intraday, interday and between blocks reliability was assessed using the intraclass correlation coefficient (ICC) and the root mean square difference (RMSD). The MLE was on average significantly higher (p < 0.001) in running (1.836 ± 0.080) compared to walking (1.386 ± 0.207). All marker-sets showed excellent ICCs (>0.90) during walking and mostly good ICCs (>0.75) during running. The RMSD ranged from 0.023 to 0.047 for walking and from 0.018 to 0.050 for running. The reliability was better when comparing MLE values between blocks (ICCs: 0.965–0.991 and 0.768–0.961; RMSD: 0.023–0.034 and 0.018–0.027 for walking and running respectively), and worse when considering trials of the same day (ICCs: 0.946–0.980 and 0.739–0.844; RMSD: 0.042–0.047 and 0.045–0.050 for walking and running respectively). Further, different marker-sets affect the reliability of the MLE in both walking and running. Our findings provide evidence that the assessment of dynamic stability using the MLE is reliable in both walking and running. More trials spread over more than 1 day should be considered in study designs with increased demands of accuracy independent of the locomotion condition.
Annals of Biomedical Engineering | 2016
Alessandro Santuz; Antonis Ekizos; Adamantios Arampatzis
Scientific Reports | 2018
Sebastian Bohm; Robert Marzilger; Falk Mersmann; Alessandro Santuz; Adamantios Arampatzis
Sports Orthopaedics and Traumatology | 2017
Alessandro Santuz; Antonis Ekizos; Vasilios Baltzopoulos; Adamantios Arampatzis
Sports Orthopaedics and Traumatology | 2017
Antonis Ekizos; Alessandro Santuz; Adamantios Arampatzis