Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Addmore Shonhai is active.

Publication


Featured researches published by Addmore Shonhai.


Protein Science | 2007

The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum

Addmore Shonhai; Aileen Boshoff

It is becoming increasingly apparent that heat shock proteins play an important role in the survival of Plasmodium falciparum against temperature changes associated with its passage from the cold‐blooded mosquito vector to the warm‐blooded human host. Interest in understanding the possible role of P. falciparum Hsp70s in the life cycle of the parasite has led to the identification of six HSP70 genes. Although most research attention has focused primarily on one of the cytosolic Hsp70s (PfHsp70‐1) and its endoplasmic reticulum homolog (PfHsp70‐2), further functional insights could be inferred from the structural motifs exhibited by the rest of the Hsp70 family members of P. falciparum. There is increasing evidence that suggests that PfHsp70‐1 could play an important role in the life cycle of P. falciparum both as a chaperone and immunogen. In addition, P. falciparum Hsp70s and Hsp40 partners are implicated in the intracellular and extracellular trafficking of proteins. This review summarizes data emerging from studies on the chaperone role of P. falciparum Hsp70s, taking advantage of inferences gleaned from their structures and information on their cellular localization. The possible associations between P. falciparum Hsp70s with their cochaperone partners as well as other chaperones and proteins are discussed.


Fems Immunology and Medical Microbiology | 2010

Plasmodial heat shock proteins: targets for chemotherapy

Addmore Shonhai

Heat shock proteins act as molecular chaperones, facilitating protein folding in cells of living organisms. Their role is particularly important in parasites because environmental changes associated with their life cycles place a strain on protein homoeostasis. Not surprisingly, some heat shock proteins are essential for the survival of the most virulent malaria parasite, Plasmodium falciparum. This justifies the need for a greater understanding of the specific roles and regulation of malarial heat shock proteins. Furthermore, heat shock proteins play a major role during invasion of the host by the parasite and mediate in malaria pathogenesis. The identification and development of inhibitor compounds of heat shock proteins has recently attracted attention. This is important, given the fact that traditional antimalarial drugs are increasingly failing, as a consequence of parasite increasing drug resistance. Heat shock protein 90 (Hsp90), Hsp70/Hsp40 partnerships and small heat shock proteins are major malaria drug targets. This review examines the structural and functional features of these proteins that render them ideal drug targets and the challenges of targeting these proteins towards malaria drug design. The major antimalarial compounds that have been used to inhibit heat shock proteins include the antibiotic, geldanamycin, deoxyspergualin and pyrimidinones. The proposed mechanisms of action of these molecules and the pathways they inhibit are discussed.


Malaria Journal | 2008

Heterologous expression of plasmodial proteins for structural studies and functional annotation

Lyn-Marie Birkholtz; Theresa L. Coetzer; Heinrich C. Hoppe; Esmare Human; Elizabeth J. Morris; Zoleka Ngcete; Lyndon Oldfield; Robyn Roth; Addmore Shonhai; Linda L. Stephens; Abraham I. Louw

Malaria remains the worlds most devastating tropical infectious disease with as many as 40% of the world population living in risk areas. The widespread resistance of Plasmodium parasites to the cost-effective chloroquine and antifolates has forced the introduction of more costly drug combinations, such as Coartem®. In the absence of a vaccine in the foreseeable future, one strategy to address the growing malaria problem is to identify and characterize new and durable antimalarial drug targets, the majority of which are parasite proteins. Biochemical and structure-activity analysis of these proteins is ultimately essential in the characterization of such targets but requires large amounts of functional protein. Even though heterologous protein production has now become a relatively routine endeavour for most proteins of diverse origins, the functional expression of soluble plasmodial proteins is highly problematic and slows the progress of antimalarial drug target discovery. Here the status quo of heterologous production of plasmodial proteins is presented, constraints are highlighted and alternative strategies and hosts for functional expression and annotation of plasmodial proteins are reviewed.


Protein and Peptide Letters | 2011

Intracellular Protozoan Parasites of Humans: The Role of Molecular Chaperones in Development and Pathogenesis

Addmore Shonhai; Alexander G. Maier; Jude M. Przyborski

Certain kinetoplastid (Leishmania spp. and Tryapnosoma cruzi) and apicomplexan parasites (Plasmodium falciparum and Toxoplasma gondii) are capable of invading human cells as part of their pathology. These parasites appear to have evolved a relatively expanded or diverse complement of genes encoding molecular chaperones. The gene families encoding heat shock protein 90 (Hsp90) and heat shock protein 70 (Hsp70) chaperones show significant expansion and diversity (especially for Leishmania spp. and T. cruzi), and in particular the Hsp40 family appears to be an extreme example of phylogenetic radiation. In general, Hsp40 proteins act as co-chaperones of Hsp70 chaperones, forming protein folding pathways that integrate with Hsp90 to ensure proteostasis in the cell. It is tempting to speculate that the diverse environmental insults that these parasites endure have resulted in the evolutionary selection of a diverse and expanded chaperone network. Hsp90 is involved in development and growth of all of these intracellular parasites, and so far represents the strongest candidate as a target for chemotherapeutic interventions. While there have been some excellent studies on the molecular and cell biology of Hsp70 proteins, relatively little is known about the biological function of Hsp70-Hsp40 interactions in these intracellular parasites. This review focuses on intracellular protozoan parasites of humans, and provides a critique of the role of heat shock proteins in development and pathogenesis, especially the molecular chaperones Hsp90, Hsp70 and Hsp40.


Molecular Genetics and Genomics | 2005

Plasmodium falciparum heat shock protein 70 is able to suppress the thermosensitivity of an Escherichia coli DnaK mutant strain.

Addmore Shonhai; Aileen Boshoff

Heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) are molecular chaperones that ensure that the proteins of the cell are properly folded and functional under both normal and stressful conditions. The malaria parasite Plasmodium falciparum is known to overproduce a heat shock protein 70 (PfHsp70) in response to thermal stress; however, the in vivo function of this protein still needs to be explored. Using in vivo complementation assays, we found that PfHsp70 was able to suppress the thermosensitivity of an Escherichia coli dnaK756 strain, but not that of the corresponding deletion strain (ΔdnaK52) or dnaK103 strain, which produces a truncated DnaK. Constructs were generated that encoded the ATPase domain of PfHsp70 fused to the substrate-binding domain (SBD) of E. coli DnaK (referred to as PfK), and the ATPase domain of E. coli DnaK coupled to the SBD of PfHsp70 (KPf). PfK was unable to suppress the thermosensitivity of any of the E. coli strains. In contrast, KPf was able to suppress the thermosensitivity in the E. coli dnaK756 strain. We also identified two key amino acid residues (V401 and Q402) in the linker region between the ATPase domain and SBD that are essential for the in vivo function of PfHsp70. This is the first example of an Hsp70 from a eukaryotic parasite that can suppress thermosensitivity in a prokaryotic system. In addition, our results also suggest that interdomain communication is critical for the function of the PfHsp70 and PfHsp70-DnaK chimeras. We discuss the implications of these data for the mechanism of action of the Hsp70-Hsp40 chaperone machinery.


The International Journal of Biochemistry & Cell Biology | 2008

The Plasmodium falciparum heat shock protein 40, Pfj4, associates with heat shock protein 70 and shows similar heat induction and localisation patterns.

Eva-Rachele Pesce; Pragyan Acharya; Utpal Tatu; William S. Nicoll; Addmore Shonhai; Heinrich C. Hoppe

Human cerebral malaria is caused by the protozoan parasite Plasmodium falciparum, which establishes itself within erythrocytes. The normal body temperature in the human host could constitute a possible source of heat stress to the parasite. Molecular chaperones belonging to the heat shock protein (Hsp) class are thought to be important for parasite subsistence in the host cell, as the expression of some members of this family has been reported to increase upon heat shock. In this paper we investigated the possible functions of the P. falciparum heat shock protein DnaJ homologue Pfj4, a type II Hsp40 protein. We analysed the ability of Pfj4 to functionally replace Escherichia coli Hsp40 proteins in a dnaJ cbpA mutant strain. Western analysis on cellular fractions of P. falciparum-infected erythrocytes revealed that Pfj4 expression increased upon heat shock. Localisation studies using immunofluorescence and immuno-electron microscopy suggested that Pfj4 and P. falciparum Hsp70, PfHsp70-1, were both localised to the parasites nucleus and cytoplasm. In some cases, Pfj4 was also detected in the erythrocyte cytoplasm of infected erythrocytes. Immunoprecipitation studies and size exclusion chromatography indicated that Pfj4 and PfHsp70-1 may directly or indirectly interact. Our results suggest a possible involvement of Pfj4 together with PfHsp70-1 in cytoprotection, and therefore, parasite survival inside the erythrocyte.


Protein and Peptide Letters | 2008

Structure-Function Study of a Plasmodium falciparum Hsp70 Using Three Dimensional Modelling and in Vitro Analyses

Addmore Shonhai; Melissa Botha; Tjaart A.P. de Beer; Aileen Boshoff

The spatial orientation of domains of the heat shock protein 70 from Plasmodium falciparum (PfHsp70) were mapped based on a three-dimensional model of the protein. Purified PfHsp70 displayed chaperone activity in vitro. Amino acid substitutions introduced in the chaperones substrate binding cavity compromised the proteins chaperone function.


Cell Stress & Chaperones | 2012

Characterisation of the Plasmodium falciparum Hsp70–Hsp90 organising protein (PfHop)

Grace Wairimu Gitau; Pradipta Mandal; Jude M. Przyborski; Addmore Shonhai

Malaria is caused by Plasmodium species, whose transmission to vertebrate hosts is facilitated by mosquito vectors. The transition from the cold blooded mosquito vector to the host represents physiological stress to the parasite, and additionally malaria blood stage infection is characterised by intense fever periods. In recent years, it has become clear that heat shock proteins play an essential role during the parasites life cycle. Plasmodium falciparum expresses two prominent heat shock proteins: heat shock protein 70 (PfHsp70) and heat shock protein 90 (PfHsp90). Both of these proteins have been implicated in the development and pathogenesis of malaria. In eukaryotes, Hsp70 and Hsp90 proteins are functionally linked by an essential adaptor protein known as the Hsp70–Hsp90 organising protein (Hop). In this study, recombinant P. falciparum Hop (PfHop) was heterologously produced in E. coli and purified by nickel affinity chromatography. Using specific anti-PfHop antisera, the expression and localisation of PfHop in P. falciparum was investigated. PfHop was shown to co-localise with PfHsp70 and PfHsp90 in parasites at the trophozoite stage. Gel filtration and co-immunoprecipitation experiments suggested that PfHop was present in a complex together with PfHsp70 and PfHsp90. The association of PfHop with both PfHsp70 and PfHsp90 suggests that this protein may mediate the functional interaction between the two chaperones.


Cell Stress & Chaperones | 2011

Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock

Melissa Botha; Annette N. Chiang; Patrick G. Needham; Linda L. Stephens; Heinrich C. Hoppe; Simone Külzer; Jude M. Przyborski; Klaus Lingelbach; Peter Wipf; Jeffrey L. Brodsky; Addmore Shonhai

Heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) function as molecular chaperones during the folding and trafficking of proteins within most cell types. However, the Hsp70–Hsp40 chaperone partnerships within the malaria parasite, Plasmodium falciparum, have not been elucidated. Only one of the 43 P. falciparum Hsp40s is predicted to be a cytosolic, canonical Hsp40 (termed PfHsp40) capable of interacting with the major cytosolic P. falciparum-encoded Hsp70, PfHsp70. Consistent with this hypothesis, we found that PfHsp40 is upregulated under heat shock conditions in a similar pattern to PfHsp70. In addition, PfHsp70 and PfHsp40 reside mainly in the parasite cytosol, as assessed using indirect immunofluorescence microscopy. Recombinant PfHsp40 stimulated the ATP hydrolytic rates of both PfHsp70 and human Hsp70 similar to other canonical Hsp40s of yeast (Ydj1) and human (Hdj2) origin. In contrast, the Hsp40-stimulated plasmodial and human Hsp70 ATPase activities were differentially inhibited in the presence of pyrimidinone-based small molecule modulators. To further probe the chaperone properties of PfHsp40, protein aggregation suppression assays were conducted. PfHsp40 alone suppressed protein aggregation, and cooperated with PfHsp70 to suppress aggregation. Together, these data represent the first cellular and biochemical evidence for a PfHsp70–PfHsp40 partnership in the malaria parasite, and furthermore that the plasmodial and human Hsp70–Hsp40 chaperones possess unique attributes that are differentially modulated by small molecules.


Molecules | 2013

Anti-Plasmodial Activity of Some Zulu Medicinal Plants and of Some Triterpenes Isolated from Them

M. B. C. Simelane; Addmore Shonhai; Francis O. Shode; Peter J. Smith; Moganavelli Singh; Andy R. Opoku

Mimusops caffra E. Mey. ex A.DC and Mimusops obtusifolia Lam (both members of the Sapotaceae family), and Hypoxis colchicifolia Bak (family Hypoxidaceae) are used by traditional healers in Zululand to manage malaria. Anti-plasmodial investigation of the crude extracts and some triterpenes isolated from the plants showed activity against a chloroquine sensitive (CQS) strain of Plasmodium falciparum (D10). Among the crude extracts the leaves of M. caffra exhibited the highest activity, with an IC50 of 2.14 μg/mL. The pentacyclic tritepenoid ursolic acid (1), isolated from the leaves of M. caffra was the most active compound (IC50 6.8 μg/mL) as compared to taraxerol (2) and sawamilletin (3) isolated from the stem bark of M. obtusifolia (IC50 > 100). Chemical modification of the ursolic acid (1) to 3β-acetylursolic acid (4) greatly enhanced its anti-plasmodial activity. Compound 4 reduced parasitaemia against Plasmodium berghei by 94.01% in in vivo studies in mice. The cytotoxicity of 3β-acetylursolic acid (IC50) to two human cell lines (HEK293 and HepG2) was 366.00 μg/mL and 566.09 μg/mL, respectively. The results validate the use of these plants in folk medicine.

Collaboration


Dive into the Addmore Shonhai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heini W. Dirr

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Ikechukwu Achilonu

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge