Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Earl Prinsloo is active.

Publication


Featured researches published by Earl Prinsloo.


BioEssays | 2009

Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation?

Earl Prinsloo; Mokgadi M. Setati; Victoria M. Longshaw

Self‐renewal and differentiation of stem cells are tightly regulated processes subject to intrinsic and extrinsic signals. Molecular chaperones and co‐chaperones, especially heat shock proteins (Hsp), are ubiquitous molecules involved in the modulation of protein conformational and complexation states. The function of Hsp, which are typically associated with stress response and tolerance, is well characterized in differentiated cells, while their role in stem cells remains unclear. It appears that embryonic stem cells exhibit increased stress tolerance and concomitant high levels of chaperone expression. This review critically evaluates stem cell research from a molecular chaperone perspective. Furthermore, we propose a model of chaperone‐modulated self‐renewal in mouse embryonic stem cells.


PLOS ONE | 2014

Hsp90 Binds Directly to Fibronectin (FN) and Inhibition Reduces the Extracellular Fibronectin Matrix in Breast Cancer Cells

Morgan C. Hunter; Kyle L. O’Hagan; Amy Kenyon; Karim Colin Hassan Dhanani; Earl Prinsloo; Adrienne L. Edkins

Heat shock protein 90 (Hsp90) has been identified in the extracellular space and has been shown to chaperone a finite number of extracellular proteins involved in cell migration and invasion. We used chemical cross-linking and immunoprecipitation followed by tandem mass spectrometry (MS/MS) to isolate a complex containing Hsp90 and the matrix protein fibronectin (FN) from breast cancer cells. Further analysis showed direct binding of Hsp90 to FN using an in vitro co-immunoprecipitation assay, a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. Confocal microscopy showed regions of co-localisation of Hsp90 and FN in breast cancer cell lines. Exogenous Hsp90β was shown to increase the formation of extracellular FN matrix in the Hs578T cell line, whilst knockdown or inhibition of Hsp90 led to a reduction in the levels of both soluble and insoluble FN and could be partially rescued by addition of exogenous Hsp90β. Treatment of cells with novobiocin led to internalization of FN into vesicles that were positive for the presence of the lysosomal marker, LAMP-1. Taken together, the direct interaction between FN and Hsp90, as well as the decreased levels of both soluble and insoluble FN upon Hsp90 inhibition or knockdown, suggested that FN may be a new client protein for Hsp90 and that Hsp90 was involved in FN matrix assembly and/or stability. The identification of FN as a putative client protein of Hsp90 suggests a role for Hsp90 in FN matrix stability, which is important for a number of fundamental cellular processes including embryogenesis, wound healing, cell migration and metastasis.


Biochemical and Biophysical Research Communications | 2014

Real-time monitoring of 3T3-L1 preadipocyte differentiation using a commercially available electric cell-substrate impedance sensor system

Adam H. Kramer; Julia Joos‐Vandewalle; Adrienne L. Edkins; Carminita L. Frost; Earl Prinsloo

Real-time analysis offers multiple benefits over traditional end point assays. Here, we present a method of monitoring the optimisation of the growth and differentiation of murine 3T3-L1 preadipocytes to adipocytes using the commercially available ACEA xCELLigence Real-Time Cell Analyser Single Plate (RTCA SP) system. Our findings indicate that the ACEA xCELLigence RTCA SP can reproducibly monitor the primary morphological changes in pre- and post-confluent 3T3-L1 fibroblasts induced to differentiate using insulin, dexamethasone, 3-isobutyl-1-methylxanthine and rosiglitazone; and may be a viable primary method of screening compounds for adipogenic factors.


Iubmb Life | 2009

Leukemia inhibitory factor promotes Hsp90 association with STAT3 in mouse embryonic stem cells

Mokgadi M. Setati; Earl Prinsloo; Victoria M. Longshaw; Patricia Murray; David Edgar

Self‐renewal of in vitro cultured mouse embryonic stem (mES) cells is dependent on the presence of leukemia inhibitory factor (LIF). LIF induces overexpression and tyrosine phosphorylation of STAT3 (signal transducer and activator of transcription 3) and its subsequent nuclear translocation. The molecular chaperone heat shock protein 90 (Hsp90) is involved in the activation and maturation of a wide variety of substrate proteins. We investigated the effect of LIF withdrawal on the protein expression levels of STAT3 and Hsp90 and on the interactions between STAT3 and Hsp90. Taken together the data presented here suggest that LIF promotes the interaction of Hsp90 with STAT3 during self‐renewal, indicating a potentially pivotal role for Hsp90 in the LIF‐based maintenance of self‐renewal of mouse embryonic stem cells.


Biochemical and Biophysical Research Communications | 2011

Hsp90α/β associates with the GSK3β/axin1/phospho-β-catenin complex in the human MCF-7 epithelial breast cancer model.

Leanne C. Cooper; Earl Prinsloo; Adrienne L. Edkins

Hsp90α/β, the signal transduction chaperone, maintains intracellular communication in normal, stem, and cancer cells. The well characterised association of Hsp90α/β with its client kinases form the framework of multiple signalling networks. GSK3β, a known Hsp90α/β client, mediates β-catenin phosphorylation as part of a cytoplasmic destruction complex which targets phospho-β-catenin to the 26S proteasome. The canonical Wnt/β-catenin pathway promotes stem cell self-renewal as well as oncogenesis. The degree of Hsp90α/β involvement in Wnt/β-catenin signalling needs clarification. Here, we describe the association of Hsp90α/β with GSK3β, β-catenin, phospho-β-catenin and the molecular scaffold, axin1, in the human MCF-7 epithelial breast cancer cell model using selective inhibition of Hsp90α/β, confocal laser scanning microscopy and immunoprecipitation. Our findings suggest that Hsp90α/β modulates the phosphorylation of β-catenin by interaction in common complex with GSK3β/axin1/β-catenin.


Iubmb Life | 2012

STAT3 interacts directly with Hsp90

Earl Prinsloo; Adam H. Kramer; Adrienne L. Edkins

Heat shock protein 90 (Hsp90) functionally modulates signal transduction. The signal transducer and activator of transcription 3 (STAT3) mediates interleukin‐6 family cytokine signaling. Aberrant activation and mutation of STAT3 is associated with oncogenesis and immune disorders, respectively. Hsp90 and STAT3 have previously been shown to colocalize and coimmunoprecipitate in common complexes. Surface plasmon resonance spectroscopy revealed a direct, high affinity specific interaction between recombinant Hsp90β and STAT3β in the presence and absence of adenosine triphosphate (ATP) in molar excess. Furthermore, comparative analysis using a phosphomimetic mutation at tyrosine 705 showed that the direct interaction appeared to favor neither unactivated nor activated STAT3. Destabilizing mutation of STAT3 at arginine residues 414/417 to alanine in the DNA‐binding domain, previously shown to disrupt nuclear translocation in vivo, reduced interaction with a STAT3 DNA binding site oligonucleotide and Hsp90β in vitro, indicating that STAT3 requires a functional DNA‐binding domain for full direct interaction with Hsp90. Site‐directed mutagenesis of a mammalian STAT3–EGFP‐N1 fusion construct at RR414/417 and subsequent transfection into human MCF7 epithelial breast cancer cells showed no impaired nuclear translocation when observed by confocal laser scanning microscopy. However, costaining for Hsp90α/β isoforms and colocalization analysis revealed a defined decrease in pixel‐on‐pixel colocalization compared with the wild‐type confirming the requirement of the DNA‐binding domain for high‐affinity interaction.


PLOS ONE | 2015

Overexpression, purification and characterisation of the Plasmodium falciparum Hsp70-z (PfHsp70-z) protein.

Tawanda Zininga; Ikechukwu Achilonu; Heinrich C. Hoppe; Earl Prinsloo; Heini W. Dirr; Addmore Shonhai

Six Hsp70-like genes are represented on the genome of Plasmodium falciparum. Of these two occur in the cytosol: P. falciparum Hsp70-z (PfHsp70-z) and PfHsp70-1. PfHsp70-1 is a well characterised canonical Hsp70 that facilitates protein quality control and is crucial for the development of malaria parasites. There is very little known about PfHsp70-z. However, PfHsp70-z is known to be essential and is implicated in suppressing aggregation of asparagine-rich proteins of P. falciparum. In addition, its expression at the clinical stage of malaria correlates with disease prognosis. Based on structural evidence PfHsp70-z belongs to the Hsp110 family of proteins. Since Hsp110 proteins have been described as nucleotide exchange factors (NEFs) of their canonical Hsp70 counterparts, it has been speculated that PfHsp70-z may serve as a NEF of PfHsp70-1. In the current study, P. falciparum cells cultured in vitro were subjected to heat stress, triggering the enhanced expression of PfHsp70-z. Biochemical assays conducted using recombinant PfHsp70-z protein demonstrated that the protein is heat stable and possesses ATPase activity. Furthermore, we observed that PfHsp70-z is capable of self-association. The structural-functional features of PfHsp70-z provide further evidence for its role as a chaperone and possible nucleotide exchange factor of PfHsp70-1.


Cell Stress & Chaperones | 2016

Plasmodium falciparum Hsp70-z, an Hsp110 homologue, exhibits independent chaperone activity and interacts with Hsp70-1 in a nucleotide-dependent fashion

Tawanda Zininga; Ikechukwu Achilonu; Heinrich C. Hoppe; Earl Prinsloo; Heini W. Dirr; Addmore Shonhai

The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a C-terminal substrate binding domain (SBD). In the ADP-bound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s. Plasmodium falciparum Hsp70-z (PfHsp70-z) is a member of the Hsp110 family of Hsp70-like proteins. PfHsp70-z is essential for survival of malaria parasites and is thought to play an important role as a molecular chaperone and nucleotide exchange factor of its cytosolic canonical Hsp70 counterpart, PfHsp70-1. Unlike PfHsp70-1 whose functions are fairly well established, the structure-function features of PfHsp70-z remain to be fully elucidated. In the current study, we established that PfHsp70-z possesses independent chaperone activity. In fact, PfHsp70-z appears to be marginally more effective in suppressing protein aggregation than its cytosol-localized partner, PfHsp70-1. Furthermore, based on coimmunoaffinity chromatography and surface plasmon resonance analyses, PfHsp70-z associated with PfHsp70-1 in a nucleotide-dependent fashion. Our findings suggest that besides serving as a molecular chaperone, PfHsp70-z could facilitate the nucleotide exchange function of PfHsp70-1. These dual functions explain why it is essential for parasite survival.


Iubmb Life | 2014

Guardian of the furnace: mitochondria, TRAP1, ROS and stem cell maintenance.

Rose Kadye; Adam H. Kramer; Julia Joos‐Vandewalle; Michelle Parsons; Zikhona Njengele; Heinrich C. Hoppe; Earl Prinsloo

Mitochondria are key to eukaryotic cell survival and their activity is linked to generation of reactive oxygen species (ROS) which in turn acts as both an intracellular signal and an effective executioner of cells with regards to cellular senescence. The mitochondrial molecular chaperone tumor necrosis factor receptor associated protein 1 (TRAP1) is often termed the cytoprotective chaperone for its role in cancer cell survival and protection from apoptosis. Here, we hypothesize that TRAP1 serves to modulate mitochondrial activity in stem cell maintenance, survival and differentiation.


Journal of Coordination Chemistry | 2016

Effects of pluronic silica nanoparticles on the photophysical and photodynamic therapy behavior of triphenyl-p-phenoxy benzoic acid metalloporphyrins

Jonathan Britton; Earl Prinsloo; Tebello Nyokong

Abstract 5, 10, 15, Triphenyl-20-p-phenoxy benzoic acid porphyrins (P) containing Zn (ZnP), Ga (GaP), and Si (SiP) were synthesized and conjugated to pluronic-silica (PluS) nanoparticles (NPs) where the fluorescence and singlet oxygen generating behavior of the porphyrins were investigated. The highest singlet oxygen quantum yield (ΦΔ) was obtained for ZnP. When the porphyrins were conjugated to the PluS NPs, the ΦΔ was quenched and fluorescence was enhanced. The pore size of the NPs upon conjugation decreased from 18.9 nm for PluS NPs to 2.4 nm (for ZnP as an example) as determined by applying the Brunauer–Emmett–Teller method. The porphyrin complexes and their conjugates were tested for their photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. It was found that ZnP and its conjugate showed the highest PDT activity. The p > 0.05 indicated that ZnP is significantly different than GaP and SiP. Graphical Abstract

Collaboration


Dive into the Earl Prinsloo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ikechukwu Achilonu

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge