Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adebola O. Ogunniyi is active.

Publication


Featured researches published by Adebola O. Ogunniyi.


Journal of Clinical Investigation | 2011

A high-throughput single-cell analysis of human CD8 + T cell functions reveals discordance for cytokine secretion and cytolysis

Navin Varadarajan; Boris Julg; Yvonne J. Yamanaka; Huabiao Chen; Adebola O. Ogunniyi; Elizabeth McAndrew; Lindsay C. Porter; Alicja Piechocka-Trocha; Brenna J. Hill; Florencia Pereyra; Bruce D. Walker; J. Christopher Love

CD8+ T cells are a key component of the adaptive immune response to viral infection. An inadequate CD8+ T cell response is thought to be partly responsible for the persistent chronic infection that arises following infection with HIV. It is therefore critical to identify ways to define what constitutes an adequate or inadequate response. IFN-γ production has been used as a measure of T cell function, but the relationship between cytokine production and the ability of a cell to lyse virus-infected cells is not clear. Moreover, the ability to assess multiple CD8+ T cell functions with single-cell resolution using freshly isolated blood samples, and subsequently to recover these cells for further functional analyses, has not been achieved. As described here, to address this need, we have developed a high-throughput, automated assay in 125-pl microwells to simultaneously evaluate the ability of thousands of individual CD8+ T cells from HIV-infected patients to mediate lysis and to produce cytokines. This concurrent, direct analysis enabled us to investigate the correlation between immediate cytotoxic activity and short-term cytokine secretion. The majority of in vivo primed, circulating HIV-specific CD8+ T cells were discordant for cytolysis and cytokine secretion, notably IFN-γ, when encountering cognate antigen presented on defined numbers of cells. Our approach should facilitate determination of signatures of functional variance among individual effector CD8+ T cells, including those from mucosal samples and those induced by vaccines.


Nature Protocols | 2009

Screening individual hybridomas by microengraving to discover monoclonal antibodies

Adebola O. Ogunniyi; Craig M. Story; Eli Papa; Eduardo Guillen; J. Christopher Love

The demand for monoclonal antibodies (mAbs) in biomedical research is significant, but the current methodologies used to discover them are both lengthy and costly. Consequently, the diversity of antibodies available for any particular antigen remains limited. Microengraving is a soft lithographic technique that provides a rapid and efficient alternative for discovering new mAbs. This protocol describes how to use microengraving to screen mouse hybridomas to establish new cell lines producing unique mAbs. Single cells from a polyclonal population are isolated into an array of microscale wells (∼105 cells per screen). The array is then used to print a protein microarray, where each element contains the antibodies captured from individual wells. The antibodies on the microarray are screened with antigens of interest, and mapped to the corresponding cells, which are then recovered from their microwells by micromanipulation. Screening and retrieval require approximately 1–3 d (9–12 d including the steps for preparing arrays of microwells).


Proceedings of the National Academy of Sciences of the United States of America | 2012

Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving

Navin Varadarajan; Douglas S. Kwon; Kenneth Law; Adebola O. Ogunniyi; Melis N. Anahtar; James M. Richter; Bruce D. Walker; J. Christopher Love

The nature of certain clinical samples (tissue biopsies, fluids) or the subjects themselves (pediatric subjects, neonates) often constrain the number of cells available to evaluate the breadth of functional T-cell responses to infections or therapeutic interventions. The methods most commonly used to assess this functional diversity ex vivo and to recover specific cells to expand in vitro usually require more than 106 cells. Here we present a process to identify antigen-specific responses efficiently ex vivo from 104–105 single cells from blood or mucosal tissues using dense arrays of subnanoliter wells. The approach combines on-chip imaging cytometry with a technique for capturing secreted proteins—called “microengraving”—to enumerate antigen-specific responses by single T cells in a manner comparable to conventional assays such as ELISpot and intracellular cytokine staining. Unlike those assays, however, the individual cells identified can be recovered readily by micromanipulation for further characterization in vitro. Applying this method to assess HIV-specific T-cell responses demonstrates that it is possible to establish clonal CD8+ T-cell lines that represent the most abundant specificities present in circulation using 100- to 1,000-fold fewer cells than traditional approaches require and without extensive genotypic analysis a priori. This rapid (<24 h), efficient, and inexpensive process should improve the comparative study of human T-cell immunology across ages and anatomic compartments.


Biotechnology Progress | 2010

Development and optimization of a process for automated recovery of single cells identified by microengraving

Jae Hyeok Choi; Adebola O. Ogunniyi; Mindy Du; Minna Du; Marcel Kretschmann; Jens Eberhardt; J. Christopher Love

Microfabricated devices are useful tools for manipulating and interrogating large numbers of single cells in a rapid and cost‐effective manner, but connecting these systems to the existing platforms used in routine high‐throughput screening of libraries of cells remains challenging. Methods to sort individual cells of interest from custom microscale devices to standardized culture dishes in an efficient and automated manner without affecting the viability of the cells are critical. Combining a commercially available instrument for colony picking (CellCelector, AVISO GmbH) and a customized software module, we have established an optimized process for the automated retrieval of individual antibody‐producing cells, secreting desirable antibodies, from dense arrays of subnanoliter containers. The selection of cells for retrieval is guided by data obtained from a high‐throughput, single‐cell screening method called microengraving. Using this system, 100 clones from a mixed population of two cell lines secreting different antibodies (12CA5 and HYB099‐01) were sorted with 100% accuracy (50 clones of each) in ∼2 h, and the cells retained viability.


The Journal of Allergy and Clinical Immunology | 2015

Peanut oral immunotherapy transiently expands circulating Ara h 2-specific B cells with a homologous repertoire in unrelated subjects.

Sarita U. Patil; Adebola O. Ogunniyi; Agustin Calatroni; Vasisht Tadigotla; Bert Ruiter; Alex Ma; James J. Moon; J. Christopher Love; Wayne G. Shreffler

BACKGROUND Peanut oral immunotherapy (PNOIT) induces persistent tolerance to peanut in a subset of patients and induces specific antibodies that might play a role in clinical protection. However, the contribution of induced antibody clones to clinical tolerance in PNOIT is unknown. OBJECTIVE We hypothesized that PNOIT induces a clonal, allergen-specific B-cell response that could serve as a surrogate for clinical outcomes. METHODS We used a fluorescent Ara h 2 multimer for affinity selection of Ara h 2-specific B cells and subsequent single-cell immunoglobulin amplification. The diversity of related clones was evaluated by means of next-generation sequencing of immunoglobulin heavy chains from circulating memory B cells with 2x250 paired-end sequencing on the Illumina MiSeq platform. RESULTS Expression of class-switched antibodies from Ara h 2-positive cells confirms enrichment for Ara h 2 specificity. PNOIT induces an early and transient expansion of circulating Ara h 2-specific memory B cells that peaks at week 7. Ara h 2-specific sequences from memory cells have rates of nonsilent mutations consistent with affinity maturation. The repertoire of Ara h 2-specific antibodies is oligoclonal. Next-generation sequencing-based repertoire analysis of circulating memory B cells reveals evidence for convergent selection of related sequences in 3 unrelated subjects, suggesting the presence of similar Ara h 2-specific B-cell clones. CONCLUSIONS Using a novel affinity selection approach to identify antigen-specific B cells, we demonstrate that the early PNOIT-induced Ara h 2-specific B-cell receptor repertoire is oligoclonal and somatically hypermutated and shares similar clonal groups among unrelated subjects consistent with convergent selection.


ACS Nano | 2013

Emergent Properties of Nanosensor Arrays: Applications for Monitoring IgG Affinity Distributions, Weakly Affined Hypermannosylation, and Colony Selection for Biomanufacturing

Nigel F. Reuel; Brittany R. Grassbaugh; Sebastian Kruss; J. Zachary Mundy; Cary Francis Opel; Adebola O. Ogunniyi; Kamal Egodage; Ramon Wahl; Bernhard Helk; Jingqing Zhang; Z. Ilke Kalcioglu; Kevin Tvrdy; Darin O. Bellisario; Bin Mu; Steven Blake; Krystyn J. Van Vliet; J. Christopher Love; Karl Dane Wittrup; Michael S. Strano

It is widely recognized that an array of addressable sensors can be multiplexed for the label-free detection of a library of analytes. However, such arrays have useful properties that emerge from the ensemble, even when monofunctionalized. As examples, we show that an array of nanosensors can estimate the mean and variance of the observed dissociation constant (KD), using three different examples of binding IgG with Protein A as the recognition site, including polyclonal human IgG (KD μ = 19 μM, σ(2) = 1000 mM(2)), murine IgG (KD μ = 4.3 nM, σ(2) = 3 μM(2)), and human IgG from CHO cells (KD μ = 2.5 nM, σ(2) = 0.01 μM(2)). Second, we show that an array of nanosensors can uniquely monitor weakly affined analyte interactions via the increased number of observed interactions. One application involves monitoring the metabolically induced hypermannosylation of human IgG from CHO using PSA-lectin conjugated sensor arrays where temporal glycosylation patterns are measured and compared. Finally, the array of sensors can also spatially map the local production of an analyte from cellular biosynthesis. As an example, we rank productivity of IgG-producing HEK colonies cultured directly on the array of nanosensors itself.


Vaccine | 2014

Profiling human antibody responses by integrated single-cell analysis

Adebola O. Ogunniyi; Brittany Anne Thomas; Timothy J. Politano; Navin Varadarajan; Elise Landais; Pascal Poignard; Bruce D. Walker; Douglas S. Kwon; J. Christopher Love

Comprehensive characterization of the antigen-specific B cells induced during infections or following vaccination would facilitate the discovery of novel antibodies and inform how interventions shape protective humoral responses. The analysis of human B cells and their antibodies has been performed using flow cytometry to evaluate memory B cells and expanded plasmablasts, while microtechnologies have also provided a useful tool to examine plasmablasts/plasma cells after vaccination. Here we present an integrated analytical platform, using arrays of subnanoliter wells (nanowells), for constructing detailed profiles for human B cells comprising the immunophenotypes of these cells, the distribution of isotypes of the secreted antibodies, the specificity and relative affinity for defined antigens, and for a subset of cells, the genes encoding the heavy and light chains. The approach combines on-chip image cytometry, microengraving, and single-cell RT-PCR. Using clinical samples from HIV-infected subjects, we demonstrate that the method can identify antigen-specific neutralizing antibodies, is compatible with both plasmablasts/plasma cells and activated memory B cells, and is well-suited for characterizing the limited numbers of B cells isolated from tissue biopsies (e.g., colon biopsies). The technology should facilitate detailed analyses of human humoral responses for evaluating vaccines and their ability to raise protective antibody responses across multiple anatomical compartments.


PLOS ONE | 2013

Single-cell analysis reveals isotype-specific autoreactive B cell repertoires in Sjögren's syndrome.

Cuong Q. Nguyen; Adebola O. Ogunniyi; Afife Karabiyik; J. Christopher Love

Microengraving is a novel technology that uses an array of microfabricated subnanoliter wells to isolate and characterize secreted proteins from larger number of single cells. This printing technique permits the capture and characterization of secreted antibodies on glass slides. Here, we profiled the antigenic repertoires of B cells reacting against salivary gland tissues in Sjögren’s syndrome (SjS), an autoimmune disease targeting the exocrine glands. Single-cell suspensions of spleen and cervical lymph node cells prepared from normal C57BL/6 and SjS-susceptible (SjSs) C57BL/6.NOD-AecAec2 mice were dispersed into subnanoliter wells (nanowells). Capture slides preincubated with mouse immunoglobulins were used for printing. Detection antibodies included fluorescence conjugated anti-IgG1, salivary gland lysates of C57BL/6 and SjSs mice. Results indicate an increase in the frequency of IgG1-secreting cells in the spleen of SjSs mice compared to C57BL/6 mice. Cells from the lymph node of SjSs mice yield higher instances of IgG1 reactive against salivary gland antigens than cells from the lymph nodes of C57BL/6 mice. These data demonstrate the isotype-specific reactivity of antibodies during the autoimmune process, and further reveals significant differences in the non-autoimmune and autoimmune antibody repertoires. These results support the generation of self-reactive B cell repertoires during the autoimmune process, at the same time, verifying that microengraving of single cells might allow for identification of novel biomarkers in SjS.


PLOS ONE | 2017

Longitudinal multiparameter single-cell analysis of macaques immunized with pneumococcal protein-conjugated or unconjugated polysaccharide vaccines reveals distinct antigen specific memory B cell repertoires

Bin Jia; Lisa K. McNeil; Christopher D. Dupont; Konstantinos Tsioris; Rachel Barry; Ingrid L. Scully; Adebola O. Ogunniyi; Christopher Gonzalez; Michael W. Pride; Todd M. Gierahn; Paul Liberator; Kathrin U. Jansen; J. Christopher Love

Background The efficacy of protein-conjugated pneumococcal polysaccharide vaccines has been well characterized for children. The level of protection conferred by unconjugated polysaccharide vaccines remains less clear, particularly for elderly individuals who have had prior antigenic experience through immunization with unconjugated polysaccharide vaccines or natural exposure to Streptococcus pneumoniae. Methods We compared the magnitude, diversity and genetic biases of antigen-specific memory B cells in two groups of adult cynomolgus macaques that were immunized with a 7-valent conjugated vaccine and boosted after five years with either a 13-valent pneumococcal polysaccharide conjugate vaccine (13vPnC) or a 23-valent unconjugated pneumococcal polysaccharide vaccine (23vPS) using microengraving (a single-cell analysis method) and single-cell RT-PCR. Results Seven days after boosting, the mean frequency of antigen-specific memory B cells was significantly increased in macaques vaccinated with 13vPnC compared to those receiving 23vPS. The 13vPnC-vaccinated macaques also exhibited a more even distribution of antibody specificities to four polysaccharides in the vaccine (PS4, 6B, 14, 23F) that were examined. However, single-cell analysis of the antibody variable region sequences from antigen-specific B cells elicited by unconjugated and conjugated vaccines indicated that both the germline gene segments forming the heavy chains and the average lengths of the Complementary Determining Region 3 (CDR3) were similar. Conclusions Our results confirm that distinctive differences can manifest between antigen-specific memory B cell repertoires in nonhuman primates immunized with conjugated and unconjugated pneumococcal polysaccharide vaccines. The study also supports the notion that the conjugated vaccines have a favorable profile in terms of both the frequency and breadth of the anamnestic response among antigen-specific memory B cells.


Lab on a Chip | 2010

Massively parallel detection of gene expression in single cells using subnanolitre wells

Yuan Gong; Adebola O. Ogunniyi; J. Christopher Love

Collaboration


Dive into the Adebola O. Ogunniyi's collaboration.

Top Co-Authors

Avatar

J. Christopher Love

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge