Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Christopher Love is active.

Publication


Featured researches published by J. Christopher Love.


Nature Biotechnology | 2006

A microengraving method for rapid selection of single cells producing antigen-specific antibodies

J. Christopher Love; Jehnna L. Ronan; Gijsbert M. Grotenbreg; Annemarthe G. Van der Veen; Hidde L. Ploegh

Monoclonal antibodies that recognize specific antigens of interest are used as therapeutic agents and as tools for biomedical research. Discovering a single monoclonal antibody requires retrieval of an individual hybridoma from polyclonal mixtures of cells producing antibodies with a variety of specificities. The time required to isolate hybridomas by a limiting serial-dilution, however, has restricted the diversity and breadth of available antibodies. Here we present a soft lithographic method based on intaglio printing to generate microarrays comprising the secreted products of single cells. These engraved arrays enable a rapid (<12 h) and high-throughput (>100,000 individual cells) system for identification, recovery and clonal expansion of cells producing antigen-specific antibodies. This method can be adapted, in principle, to detect any secreted product in a multiplexed manner.


Nature Biotechnology | 2014

Whole exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer

Jens Lohr; Viktor A. Adalsteinsson; Kristian Cibulskis; Atish D. Choudhury; Mara Rosenberg; Peter Cruz-Gordillo; Joshua M. Francis; Cheng-Zhong Zhang; Alex K. Shalek; Rahul Satija; John J. Trombetta; Diana Lu; Naren Tallapragada; Narmin Tahirova; Sora Kim; Brendan Blumenstiel; Carrie Sougnez; Alarice Lowe; Bang Wong; Daniel Auclair; Eliezer M. Van Allen; Mari Nakabayashi; Rosina T. Lis; Gwo-Shu Mary Lee; Tiantian Li; Matthew S. Chabot; Amy Ly; Mary-Ellen Taplin; Thomas E. Clancy; Massimo Loda

Comprehensive analyses of cancer genomes promise to inform prognoses and precise cancer treatments. A major barrier, however, is inaccessibility of metastatic tissue. A potential solution is to characterize circulating tumor cells (CTCs), but this requires overcoming the challenges of isolating rare cells and sequencing low-input material. Here we report an integrated process to isolate, qualify and sequence whole exomes of CTCs with high fidelity using a census-based sequencing strategy. Power calculations suggest that mapping of >99.995% of the standard exome is possible in CTCs. We validated our process in two patients with prostate cancer, including one for whom we sequenced CTCs, a lymph node metastasis and nine cores of the primary tumor. Fifty-one of 73 CTC mutations (70%) were present in matched tissue. Moreover, we identified 10 early trunk and 56 metastatic trunk mutations in the non-CTC tumor samples and found 90% and 73% of these mutations, respectively, in CTC exomes. This study establishes a foundation for CTC genomics in the clinic.


Nature Immunology | 2014

Single-cell technologies for monitoring immune systems

Pratip K. Chattopadhyay; Todd M. Gierahn; Mario Roederer; J. Christopher Love

The complex heterogeneity of cells, and their interconnectedness with each other, are major challenges to identifying clinically relevant measurements that reflect the state and capability of the immune system. Highly multiplexed, single-cell technologies may be critical for identifying correlates of disease or immunological interventions as well as for elucidating the underlying mechanisms of immunity. Here we review limitations of bulk measurements and explore advances in single-cell technologies that overcome these problems by expanding the depth and breadth of functional and phenotypic analysis in space and time. The geometric increases in complexity of data make formidable hurdles for exploring, analyzing and presenting results. We summarize recent approaches to making such computations tractable and discuss challenges for integrating heterogeneous data obtained using these single-cell technologies.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Polyfunctional responses by human T cells result from sequential release of cytokines

Qing Han; Neda Bagheri; Elizabeth M. Bradshaw; David A. Hafler; Douglas A. Lauffenburger; J. Christopher Love

The release of cytokines by T cells defines a significant part of their functional activity in vivo, and their ability to produce multiple cytokines has been associated with beneficial immune responses. To date, time-integrated end-point measurements have obscured whether these polyfunctional states arise from the simultaneous or successive release of cytokines. Here, we used serial, time-dependent, single-cell analysis of primary human T cells to resolve the temporal dynamics of cytokine secretion from individual cells after activation ex vivo. We show that multifunctional, Th1-skewed cytokine responses (IFN-γ, IL-2, TNFα) are initiated asynchronously, but the ensuing dynamic trajectories of these responses evolve programmatically in a sequential manner. That is, cells predominantly release one of these cytokines at a time rather than maintain active secretion of multiple cytokines simultaneously. Furthermore, these dynamic trajectories are strongly associated with the various states of cell differentiation suggesting that transient programmatic activities of many individual T cells contribute to sustained, population-level responses. The trajectories of responses by single cells may also provide unique, time-dependent signatures for immune monitoring that are less compromised by the timing and duration of integrated measures.


Biomaterials | 2008

Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments.

Amy P. Wong; Raquel Perez-Castillejos; J. Christopher Love; George M. Whitesides

Accurate modeling of the cellular microenvironment is important for improving studies of cell biology in vitro. Here, we demonstrate a flexible method for creating a cellular microenvironment in vitro that allows (i) controlled spatial distribution (patterning) of multiple types of cells within three-dimensional (3-D) matrices of a biologically derived, thermally curable hydrogel (Matrigel) and (ii) application of gradients of soluble factors, such as cytokines, across the hydrogel. The technique uses laminar flow to divide a microchannel into multiple subchannels separated by microslabs of hydrogel. It does not require the use of UV light or photoinitiators and is compatible with cell culture in the hydrogel. This technique makes it possible to design model systems to study cellular communication mediated by the diffusion of soluble factors within 3-D matrices. Such factors can originate either from secretions of neighboring cells patterned within the microchannel, or from an external source -- e.g., a solution of growth factors injected into a subchannel. This method is particularly useful for studying cells such as those of the immune system, which are often weakly adherent and difficult to position precisely with standard systems for cell culture. We demonstrated this application by co-culturing two types of macrophage-like cells (BAC1.2F5 and LADMAC cell lines) within spatially separated regions of a slab of hydrogel. This pair of cell lines represents a simple model system for intercellular communication: the LADMAC cells produce colony-stimulating factor 1 (CSF-1), which is required by the BAC cells for survival.


The EMBO Journal | 2009

XBP‐1 regulates signal transduction, transcription factors and bone marrow colonization in B cells

Chih-Chi Andrew Hu; Stephanie K. Dougan; Annette M. McGehee; J. Christopher Love; Hidde L. Ploegh

XBP‐1, a transcription factor that drives the unfolded protein response (UPR), is activated in B cells when they differentiate to plasma cells. Here, we show that in the B cells, whose capacity to secrete IgM has been eliminated, XBP‐1 is induced normally on induction of differentiation, suggesting that activation of XBP‐1 in B cells is a differentiation‐dependent event, but not the result of a UPR caused by the abundant synthesis of secreted IgM. Without XBP‐1, B cells fail to signal effectively through the B‐cell receptor. The signalling defects lead to aberrant expression of the plasma cell transcription factors IRF4 and Blimp‐1, and altered levels of activation‐induced cytidine deaminase and sphingosine‐1‐phosphate receptor. Using XBP‐1‐deficient/Blimp‐1‐GFP transgenic mice, we find that XBP‐1‐deficient B cells form antibody‐secreting plasmablasts in response to initial immunization; however, these plasmablasts respond ineffectively to CXCL12. They fail to colonize the bone marrow and do not sustain antibody production. These findings define the role of XBP‐1 in normal plasma cell development and have implications for management of B‐cell malignancies.


Journal of Clinical Investigation | 2011

A high-throughput single-cell analysis of human CD8 + T cell functions reveals discordance for cytokine secretion and cytolysis

Navin Varadarajan; Boris Julg; Yvonne J. Yamanaka; Huabiao Chen; Adebola O. Ogunniyi; Elizabeth McAndrew; Lindsay C. Porter; Alicja Piechocka-Trocha; Brenna J. Hill; Florencia Pereyra; Bruce D. Walker; J. Christopher Love

CD8+ T cells are a key component of the adaptive immune response to viral infection. An inadequate CD8+ T cell response is thought to be partly responsible for the persistent chronic infection that arises following infection with HIV. It is therefore critical to identify ways to define what constitutes an adequate or inadequate response. IFN-γ production has been used as a measure of T cell function, but the relationship between cytokine production and the ability of a cell to lyse virus-infected cells is not clear. Moreover, the ability to assess multiple CD8+ T cell functions with single-cell resolution using freshly isolated blood samples, and subsequently to recover these cells for further functional analyses, has not been achieved. As described here, to address this need, we have developed a high-throughput, automated assay in 125-pl microwells to simultaneously evaluate the ability of thousands of individual CD8+ T cells from HIV-infected patients to mediate lysis and to produce cytokines. This concurrent, direct analysis enabled us to investigate the correlation between immediate cytotoxic activity and short-term cytokine secretion. The majority of in vivo primed, circulating HIV-specific CD8+ T cells were discordant for cytolysis and cytokine secretion, notably IFN-γ, when encountering cognate antigen presented on defined numbers of cells. Our approach should facilitate determination of signatures of functional variance among individual effector CD8+ T cells, including those from mucosal samples and those induced by vaccines.


Nature Protocols | 2009

Screening individual hybridomas by microengraving to discover monoclonal antibodies

Adebola O. Ogunniyi; Craig M. Story; Eli Papa; Eduardo Guillen; J. Christopher Love

The demand for monoclonal antibodies (mAbs) in biomedical research is significant, but the current methodologies used to discover them are both lengthy and costly. Consequently, the diversity of antibodies available for any particular antigen remains limited. Microengraving is a soft lithographic technique that provides a rapid and efficient alternative for discovering new mAbs. This protocol describes how to use microengraving to screen mouse hybridomas to establish new cell lines producing unique mAbs. Single cells from a polyclonal population are isolated into an array of microscale wells (∼105 cells per screen). The array is then used to print a protein microarray, where each element contains the antibodies captured from individual wells. The antibodies on the microarray are screened with antigens of interest, and mapped to the corresponding cells, which are then recovered from their microwells by micromanipulation. Screening and retrieval require approximately 1–3 d (9–12 d including the steps for preparing arrays of microwells).


Nature | 2014

In vivo discovery of immunotherapy targets in the tumour microenvironment

Penghui Zhou; Donald R. Shaffer; Diana A. Alvarez Arias; Yukoh Nakazaki; Wouter Pos; Alexis J. Torres; Viviana Cremasco; Stephanie K. Dougan; Glenn S. Cowley; Kutlu G. Elpek; Jennifer Brogdon; John Lamb; Shannon J. Turley; Hidde L. Ploegh; David E. Root; J. Christopher Love; Glenn Dranoff; Nir Hacohen; Harvey Cantor; Kai W. Wucherpfennig

Recent clinical trials showed that targeting of inhibitory receptors on T cells induces durable responses in a subset of cancer patients, despite advanced disease. However, the regulatory switches controlling T-cell function in immunosuppressive tumours are not well understood. Here we show that such inhibitory mechanisms can be systematically discovered in the tumour microenvironment. We devised an in vivo pooled short hairpin RNA (shRNA) screen in which shRNAs targeting negative regulators became highly enriched in murine tumours by releasing a block on T-cell proliferation upon tumour antigen recognition. Such shRNAs were identified by deep sequencing of the shRNA cassette from T cells infiltrating tumour or control tissues. One of the target genes was Ppp2r2d, a regulatory subunit of the PP2A phosphatase family. In tumours, Ppp2r2d knockdown inhibited T-cell apoptosis and enhanced T-cell proliferation as well as cytokine production. Key regulators of immune function can therefore be discovered in relevant tissue microenvironments.


Journal of Immunology | 2007

Tubulation of Class II MHC Compartments Is Microtubule Dependent and Involves Multiple Endolysosomal Membrane Proteins in Primary Dendritic Cells

Jatin M. Vyas; You-Me Kim; Katerina Artavanis-Tsakonas; J. Christopher Love; Annemarthe G. Van der Veen; Hidde L. Ploegh

Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP.

Collaboration


Dive into the J. Christopher Love's collaboration.

Top Co-Authors

Avatar

Kerry Routenberg Love

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adebola O. Ogunniyi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Todd M. Gierahn

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brittany A. Goods

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvonne J. Yamanaka

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge