Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adele Telenius is active.

Publication


Featured researches published by Adele Telenius.


Nature | 2011

MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers

Christian Steidl; Sohrab P. Shah; Bruce Woolcock; Lixin Rui; Masahiro Kawahara; Pedro Farinha; Nathalie A. Johnson; Yongjun Zhao; Adele Telenius; Susana Ben Neriah; Andrew McPherson; Barbara Meissner; Ujunwa C. Okoye; Arjan Diepstra; Anke van den Berg; Mark Sun; Gillian Leung; Steven J.M. Jones; Joseph M. Connors; David Huntsman; Kerry J. Savage; Lisa M. Rimsza; Douglas E. Horsman; Louis M. Staudt; Ulrich Steidl; Marco A. Marra; Randy D. Gascoyne

Chromosomal translocations are critically involved in the molecular pathogenesis of B-cell lymphomas, and highly recurrent and specific rearrangements have defined distinct molecular subtypes linked to unique clinicopathological features. In contrast, several well-characterized lymphoma entities still lack disease-defining translocation events. To identify novel fusion transcripts resulting from translocations, we investigated two Hodgkin lymphoma cell lines by whole-transcriptome paired-end sequencing (RNA-seq). Here we show a highly expressed gene fusion involving the major histocompatibility complex (MHC) class II transactivator CIITA (MHC2TA) in KM-H2 cells. In a subsequent evaluation of 263 B-cell lymphomas, we also demonstrate that genomic CIITA breaks are highly recurrent in primary mediastinal B-cell lymphoma (38%) and classical Hodgkin lymphoma (cHL) (15%). Furthermore, we find that CIITA is a promiscuous partner of various in-frame gene fusions, and we report that CIITA gene alterations impact survival in primary mediastinal B-cell lymphoma (PMBCL). As functional consequences of CIITA gene fusions, we identify downregulation of surface HLA class II expression and overexpression of ligands of the receptor molecule programmed cell death 1 (CD274/PDL1 and CD273/PDL2). These receptor–ligand interactions have been shown to impact anti-tumour immune responses in several cancers, whereas decreased MHC class II expression has been linked to reduced tumour cell immunogenicity. Thus, our findings suggest that recurrent rearrangements of CIITA may represent a novel genetic mechanism underlying tumour–microenvironment interactions across a spectrum of lymphoid cancers.


Blood | 2012

Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma

Robert Kridel; Barbara Meissner; Sanja Rogic; Merrill Boyle; Adele Telenius; Bruce Woolcock; Jay Gunawardana; Christopher Jenkins; Chris Cochrane; Susana Ben-Neriah; King Tan; Ryan D. Morin; Stephen Opat; Laurie H. Sehn; Joseph M. Connors; Marco A. Marra; Andrew P. Weng; Christian Steidl; Randy D. Gascoyne

Mantle cell lymphoma (MCL), an aggressive subtype of non-Hodgkin lymphoma, is characterized by the hallmark translocation t(11;14)(q13;q32) and the resulting overexpression of cyclin D1 (CCND1). Our current knowledge of this disease encompasses frequent secondary cytogenetic aberrations and the recurrent mutation of a handful of genes, such as TP53, ATM, and CCND1. However, these findings insufficiently explain the biologic underpinnings of MCL. Here, we performed whole transcriptome sequencing on a discovery cohort of 18 primary tissue MCL samples and 2 cell lines. We found recurrent mutations in NOTCH1, a finding that we confirmed in an extension cohort of 108 clinical samples and 8 cell lines. In total, 12% of clinical samples and 20% of cell lines harbored somatic NOTCH1 coding sequence mutations that clustered in the PEST domain and predominantly consisted of truncating mutations or small frame-shifting indels. NOTCH1 mutations were associated with poor overall survival (P = .003). Furthermore, we showed that inhibition of the NOTCH pathway reduced proliferation and induced apoptosis in 2 MCL cell lines. In summary, we have identified recurrent NOTCH1 mutations that provide the preclinical rationale for therapeutic inhibition of the NOTCH pathway in a subset of patients with MCL.


Blood | 2014

Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma.

David D.W. Twa; Fong Chun Chan; Susana Ben-Neriah; Bruce Woolcock; Anja Mottok; King Tan; Graham W. Slack; Jay Gunawardana; Raymond S. Lim; Andrew McPherson; Robert Kridel; Adele Telenius; David W. Scott; Kerry J. Savage; Sohrab P. Shah; Randy D. Gascoyne; Christian Steidl

The pathogenesis of primary mediastinal large B-cell lymphoma (PMBCL) is incompletely understood. Recently, specific genotypic and phenotypic features have been linked to tumor cell immune escape mechanisms in PMBCL. We studied 571 B-cell lymphomas with a focus on PMBCL. Using fluorescence in situ hybridization here, we report that the programmed death ligand (PDL) locus (9p24.1) is frequently and specifically rearranged in PMBCL (20%) as compared with diffuse large B-cell lymphoma, follicular lymphoma, and Hodgkin lymphoma. Rearrangement was significantly correlated with overexpression of PDL transcripts. Utilizing high-throughput sequencing techniques, we characterized novel translocations and chimeric fusion transcripts involving PDLs at base-pair resolution. Our data suggest that recurrent genomic rearrangement events underlie an immune privilege phenotype in a subset of B-cell lymphomas.


Cancer Research | 2010

Acquired TNFRSF14 Mutations in Follicular Lymphoma Are Associated with Worse Prognosis

K-John J. Cheung; Nathalie A. Johnson; Joslynn G. Affleck; Tesa Severson; Christian Steidl; Susana Ben-Neriah; Jacqueline E. Schein; Ryan D. Morin; Richard G. Moore; Sohrab P. Shah; Hong Qian; Jessica E. Paul; Adele Telenius; Thomas Relander; Wan L. Lam; Kerry J. Savage; Joseph M. Connors; Carolyn J. Brown; Marco A. Marra; Randy D. Gascoyne; Douglas E. Horsman

Clinical correlative studies have linked 1p36 deletions with worse prognosis in follicular lymphoma (FL). In this study, we sought to identify the critical gene(s) in this region that is responsible for conferring inferior prognosis. BAC array technology applied to 141 FL specimens detected a minimum region of deletion (MRD) of ∼97 kb within 1p36.32 in 20% of these cases. Frequent single-nucleotide polymorphism-detected copy-neutral loss of heterozygosity was also found in this region. Analysis of promoter CpGs in the MRD did not reveal differential patterns of DNA methylation in samples that differed in 1p36 status. Exon sequencing of MRD genes identified somatic alterations in the TNFRSF14 gene in 3 of 11 selected cases with matching normal DNA. An expanded cohort consisting of 251 specimens identified 46 cases (18.3%) with nonsynonymous mutations affecting TNFRSF14. Overall survival (OS) and disease-specific survival (DSS) were associated with the presence of TNFRSF14 mutation in patients whose overall treatment included rituximab. We further showed that inferior OS and DSS were most pronounced in patients whose lymphomas contained both TNFRSF14 mutations and 1p36 deletions after adjustment for the International Prognostic Index [hazard ratios of 3.65 (95% confidence interval, 1.35-9.878, P=0.011) and 3.19 (95% confidence interval, 1.06-9.57, P=0.039), respectively]. Our findings identify TNFRSF14 as a candidate gene associated with a subset of FL, based on frequent occurrence of acquired mutations and their correlation with inferior clinical outcomes.


Blood | 2010

Genome-wide copy number analysis of Hodgkin Reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome

Christian Steidl; Adele Telenius; Sohrab P. Shah; Pedro Farinha; Lorena Barclay; Merrill Boyle; Joseph M. Connors; Douglas E. Horsman; Randy D. Gascoyne

In classical Hodgkin lymphoma (cHL) the mechanisms underlying primary refractory disease and relapse remain unknown. To gain further insight into cHL pathogenesis and genomic changes linked to treatment response, we studied 53 cHL patients by array comparative genomic hybridization, including 23 patients whose primary treatment failed, using DNA from microdissected HRS cells. Copy number alterations found in more than 20% of cases included gains of 2p, 9p, 16p, 17q, 19q, 20q, and losses of 6q, 11q, and 13q. We identified at high resolution recurrent changes defining minimally gained and lost regions harboring genes involved in nuclear factor kappaB signaling, such as REL, IKBKB, CD40, and MAP3K14. Gains of chromosome 16p11.2-13.3 were significantly more frequent in pretreatment and relapse biopsies of unresponsive patients and were associated with shortened disease-specific survival (P = .028). In the therapy-resistant HL cell line KMH2, we found genomic gains and overexpression of the multidrug resistance gene ABCC1 mapping to cytoband 16p13.11. We show that doxorubicin exposure to KMH2 induces ABCC1 expression and that siRNA silencing of ABCC1 sensitizes KMH2 cells to doxorubicin toxicity in vitro, suggesting that overexpression of ABCC1 contributes to the drug resistance phenotype found in KMH2.


Blood | 2008

High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival

Daniel T. Starczynowski; Suzanne M. Vercauteren; Adele Telenius; Sandy Sung; Kaoru Tohyama; Angela Brooks-Wilson; John J. Spinelli; Connie J. Eaves; Allen C. Eaves; Douglas E. Horsman; Wan L. Lam; Aly Karsan

Myelodysplastic syndromes (MDSs) pose an important diagnostic and treatment challenge because of the genetic heterogeneity and poorly understood biology of the disease. To investigate initiating genomic alterations and the potential prognostic significance of cryptic genomic changes in low-risk MDS, we performed whole genome tiling path array comparative genomic hybridization (aCGH) on CD34(+) cells from 44 patients with an International Prognostic Scoring System score less than or equal to 1.0. Clonal copy number differences were detected in cells from 36 of 44 patients. In contrast, cells from only 16 of the 44 patients displayed karyotypic abnormalities. Although most patients had normal karyotype, aCGH identified 21 recurring copy number alterations. Examples of frequent cryptic alterations included gains at 11q24.2-qter, 17q11.2, and 17q12 and losses at 2q33.1-q33.2, 5q13.1-q13.2, and 10q21.3. Maintenance of genomic integrity defined as less than 3 Mb total disruption of the genome correlated with better overall survival (P = .002) and was less frequently associated with transformation to acute myeloid leukemia (P = .033). This study suggests a potential role for the use of aCGH in the clinical workup of MDS patients.


Journal of Clinical Oncology | 2013

Gene Expression–Based Model Using Formalin-Fixed Paraffin-Embedded Biopsies Predicts Overall Survival in Advanced-Stage Classical Hodgkin Lymphoma

David W. Scott; Fong Chun Chan; Fangxin Hong; Sanja Rogic; King Tan; Barbara Meissner; Susana Ben-Neriah; Merrill Boyle; Robert Kridel; Adele Telenius; Bruce Woolcock; Pedro Farinha; Richard I. Fisher; Lisa M. Rimsza; Nancy L. Bartlett; Bruce D. Cheson; Lois E. Shepherd; Ranjana H. Advani; Joseph M. Connors; Brad S. Kahl; Leo I. Gordon; Sandra J. Horning; Christian Steidl; Randy D. Gascoyne

PURPOSE Our aim was to reliably identify patients with advanced-stage classical Hodgkin lymphoma (cHL) at increased risk of death by developing a robust predictor of overall survival (OS) using gene expression measured in routinely available formalin-fixed paraffin-embedded tissue (FFPET). METHODS Expression levels of 259 genes, including those previously reported to be associated with outcome in cHL, were determined by digital expression profiling of pretreatment FFPET biopsies from 290 patients enrolled onto the E2496 Intergroup trial comparing doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) and Stanford V regimens in locally extensive and advanced-stage cHL. A model for OS separating patients into low- and high-risk groups was produced using penalized Cox regression. The model was tested in an independent cohort of 78 patients enriched for treatment failure but otherwise similar to patients in a population-based registry of patients treated with ABVD. Weighted analysis methods generated unbiased estimates of predictor performance in the population-based registry. RESULTS A 23-gene outcome predictor was generated. The model identified a population at increased risk of death in the validation cohort. There was a 29% absolute difference in 5-year OS between the high- and low-risk groups (63% v 92%, respectively; log-rank P < .001; hazard ratio, 6.7; 95% CI, 2.6 to 17.4). The predictor was superior to the International Prognostic Score and CD68 immunohistochemistry in multivariate analyses. CONCLUSION A gene expression-based predictor, developed in and applicable to routinely available FFPET biopsies, identifies patients with advanced-stage cHL at increased risk of death when treated with standard-intensity up-front regimens.


Blood | 2009

Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances

K-John J. Cheung; Sohrab P. Shah; Christian Steidl; Nathalie A. Johnson; Thomas Relander; Adele Telenius; Betty Lai; Kevin P. Murphy; Wan L. Lam; Abdulwahab J. Al-Tourah; Joseph M. Connors; Raymond T. Ng; Randy D. Gascoyne; Douglas E. Horsman

The secondary genetic events associated with follicular lymphoma (FL) progression are not well defined. We applied genome-wide BAC array comparative genomic hybridization to 106 diagnostic biopsies of FL to characterize regional genomic imbalances. Using an analytical approach that defined regions of copy number change as intersections between visual annotations and a Hidden Markov model-based algorithm, we identified 71 regional alterations that were recurrent in at least 10% of cases. These ranged in size from approximately 200 kb to 44 Mb, affecting chromosomes 1, 5, 6, 7, 8, 10, 12, 17, 18, 19, and 22. We also demonstrated by cluster analysis that 46.2% of the 106 cases could be sub-grouped based on the presence of +1q, +6p/6q-, +7, or +18. Survival analysis showed that 21 of the 71 regions correlated significantly with inferior overall survival (OS). Of these 21 regions, 16 were independent predictors of OS using a multivariate Cox model that included the international prognostic index (IPI) score. Two of these 16 regions (1p36.22-p36.33 and 6q21-q24.3) were also predictors of transformation risk and independent of IPI. These prognostic features may be useful to identify high-risk patients as candidates for risk-adapted therapies.


Journal of Clinical Oncology | 2015

Prognostic Significance of Diffuse Large B-Cell Lymphoma Cell of Origin Determined by Digital Gene Expression in Formalin-Fixed Paraffin-Embedded Tissue Biopsies

David W. Scott; Anja Mottok; Daisuke Ennishi; George W. Wright; Pedro Farinha; Susana Ben-Neriah; Robert Kridel; Garrett Barry; Christoffer Hother; Pau Abrisqueta; Merrill Boyle; Barbara Meissner; Adele Telenius; Kerry J. Savage; Laurie H. Sehn; Graham W. Slack; Christian Steidl; Louis M. Staudt; Joseph M. Connors; Lisa M. Rimsza; Randy D. Gascoyne

PURPOSE To evaluate the prognostic impact of cell-of-origin (COO) subgroups, assigned using the recently described gene expression-based Lymph2Cx assay in comparison with International Prognostic Index (IPI) score and MYC/BCL2 coexpression status (dual expressers). PATIENTS AND METHODS Reproducibility of COO assignment using the Lymph2Cx assay was tested employing repeated sampling within tumor biopsies and changes in reagent lots. The assay was then applied to pretreatment formalin-fixed paraffin-embedded tissue (FFPET) biopsies from 344 patients with de novo diffuse large B-cell lymphoma (DLBCL) uniformly treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) at the British Columbia Cancer Agency. MYC and BCL2 protein expression was assessed using immunohistochemistry on tissue microarrays. RESULTS The Lymph2Cx assay provided concordant COO calls in 96% of 49 repeatedly sampled tumor biopsies and in 100% of 83 FFPET biopsies tested across reagent lots. Critically, no frank misclassification (activated B-cell-like DLBCL to germinal center B-cell-like DLBCL or vice versa) was observed. Patients with activated B-cell-like DLBCL had significantly inferior outcomes compared with patients with germinal center B-cell-like DLBCL (log-rank P < .001 for time to progression, progression-free survival, disease-specific survival, and overall survival). In pairwise multivariable analyses, COO was associated with outcomes independent of IPI score and MYC/BCL2 immunohistochemistry. The prognostic significance of COO was particularly evident in patients with intermediate IPI scores and the non-MYC-positive/BCL2-positive subgroup (log-rank P < .001 for time to progression). CONCLUSION Assignment of DLBCL COO by the Lymph2Cx assay using FFPET biopsies identifies patient groups with significantly different outcomes after R-CHOP, independent of IPI score and MYC/BCL2 dual expression.


Nature Genetics | 2014

Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma

Jay Gunawardana; Fong Chun Chan; Adele Telenius; Bruce Woolcock; Robert Kridel; King Tan; Susana Ben-Neriah; Anja Mottok; Raymond S. Lim; Merrill Boyle; Sanja Rogic; Lisa M. Rimsza; Chrystelle Guiter; Karen Leroy; Philippe Gaulard; Corinne Haioun; Marco A. Marra; Kerry J. Savage; Joseph M. Connors; Sohrab P. Shah; Randy D. Gascoyne; Christian Steidl

Classical Hodgkin lymphoma and primary mediastinal B cell lymphoma (PMBCL) are related lymphomas sharing pathological, molecular and clinical characteristics. Here we discovered by whole-genome and whole-transcriptome sequencing recurrent somatic coding-sequence mutations in the PTPN1 gene. Mutations were found in 6 of 30 (20%) Hodgkin lymphoma cases, in 6 of 9 (67%) Hodgkin lymphoma–derived cell lines, in 17 of 77 (22%) PMBCL cases and in 1 of 3 (33%) PMBCL-derived cell lines, consisting of nonsense, missense and frameshift mutations. We demonstrate that PTPN1 mutations lead to reduced phosphatase activity and increased phosphorylation of JAK-STAT pathway members. Moreover, silencing of PTPN1 by RNA interference in Hodgkin lymphoma cell line KM-H2 resulted in hyperphosphorylation and overexpression of downstream oncogenic targets. Our data establish PTPN1 mutations as new drivers in lymphomagenesis.

Collaboration


Dive into the Adele Telenius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph M. Connors

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sohrab P. Shah

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Robert Kridel

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco A. Marra

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge