Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adelheid Godt is active.

Publication


Featured researches published by Adelheid Godt.


Applied Magnetic Resonance | 2006

DeerAnalysis2006 - a comprehensive software package for analyzing pulsed ELDOR data

Gunnar Jeschke; Victor Chechik; Petre Ionita; Adelheid Godt; Herbert Zimmermann; Janet E. Banham; Christiane R. Timmel; Daniel Hilger; Hyun Suk Jung

Pulsed electron-electron double resonance techniques such as the four-pulse double electron-electron resonance experiment measure a dipolar evolution function of the sample. For a sample consisting of spin-carrying nanoobjects, this function is the product of a form factor, corresponding to the internal structure of the nanoobject, and a background factor, corresponding to the distribution of nanoobjects in space. The form factor contains information on the spin-to-spin distance distribution within the nanoobject and on the average number of spins per nanoobject, while the background factor depends on constraints, such as a confinement of the nanoobjects to a two-dimensional layer. Separation of the dipolar evolution function into these two contributions and extraction of the spin-to-spin distance distribution require numerically stable mathematical algorithms that can handle data for different classes of samples, e.g., spin-labelled biomacromolecules and synthetic materials. Furthermore, experimental imperfections such as the limited excitation bandwidth of microwave pulses need to be considered. The software package DeerAnalysis2006 provides access to a comprehensive set of tools for such data analysis within a common user interface. This interface allows for several tests of the reliability and precision of the extracted information. User-supplied models for the spin-to-spin distance distribution within a certain class of nanoobjects can be added to an existing library and be fitted with a universal algorithm.


Applied Magnetic Resonance | 2004

Data analysis procedures for pulse ELDOR measurements of broad distance distributions

Gunnar Jeschke; G. Panek; Adelheid Godt; Alexander Bender; Harald Paulsen

The reliability of procedures for extracting the distance distribution between spins from the dipolar evolution function is studied with particular emphasis on broad distributions. A new numerically stable procedure for fitting distance distributions with polynomial interpolation between sampling points is introduced and compared to Tikhonov regularization in the dipolar frequency and distance domains and to approximate Pake transformation. Distance distribution with only narrow peaks are most reliably extracted by distance-domain Tikhonov regularization, while frequency-domain Tikhonov regularization is favorable for distributions with only broad peaks. For the quantification of distributions by their mean distance and variance, Hermite polynomial interpolation provides the best results. Distributions that contain both broad and narrow peaks are most difficult to analyze. In this case a high signal-to-noise ratio is strictly required and approximate Pake transformation should be applied. A procedure is given for renormalizing primary experimental data from protein preparations with slightly different degrees of spin labelling, so that they can be compared directly. Performance of all the data analysis procedures is demonstrated on experimental data for a shape-persistent biradical with a label-to-label distance of 5 nm, for a [2]catenane with a broad distance distribution, and for a doubly spin-labelled double mutant of plant light harvesting complex II


Physical Chemistry Chemical Physics | 2012

High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies.

Yevhen Polyhach; Enrica Bordignon; Rene Tschaggelar; Sandhya Gandra; Adelheid Godt; Gunnar Jeschke

Measurement of distances with the Double Electron-Electron Resonance (DEER) experiment at X-band frequencies using a pair of nitroxides as spin labels is a popular biophysical tool for studying function-related conformational dynamics of proteins. The technique is intrinsically highly precise and can potentially access the range from 1.5 to 6-10 nm. However, DEER performance drops strongly when relaxation rates of the nitroxide spin labels are high and available material quantities are low, which is usually the case for membrane proteins reconstituted into liposomes. This leads to elevated noise levels, very long measurement times, reduced precision, and a decrease of the longest accessible distances. Here we quantify the performance improvement that can be achieved at Q-band frequencies (34.5 GHz) using a high-power spectrometer. More than an order of magnitude gain in sensitivity is obtained with a homebuilt setup equipped with a 150 W TWT amplifier by using oversized samples. The broadband excitation enabled by the high power ensures that orientation selection can be suppressed in most cases, which facilitates extraction of distance distributions. By varying pulse lengths, Q-band DEER can be switched between orientationally non-selective and selective regimes. Because of suppression of nuclear modulations from matrix protons and deuterons, analysis of the Q-band data is greatly simplified, particularly in cases of very small DEER modulation depth due to low binding affinity between proteins forming a complex or low labelling efficiency. Finally, we demonstrate that a commercial Q-band spectrometer can be readily adjusted to the high-power operation.


Chemistry: A European Journal | 2011

Porous interpenetrated zirconium-organic frameworks (PIZOFs): a chemically versatile family of metal-organic frameworks.

Andreas Schaate; Pascal Roy; Thomas Preuße; Sven Jare Lohmeier; Adelheid Godt; Peter Behrens

We present the synthesis and characterization of porous interpenetrated zirconium-organic frameworks (PIZOFs), a new family of metal-organic frameworks obtained from ZrCl(4) and the rodlike dicarboxylic acids HO(2)C[PE-P(R(1),R(2))-EP]CO(2) H that consist of alternating phenylene (P) and ethynylene (E) units. The substituents R(1),R(2) were broadly varied (alkyl, O-alkyl, oligo(ethylene glycol)), including postsynthetically addressable substituents (amino, alkyne, furan). The PIZOF structure is highly tolerant towards the variation of R(1) and R(2). This together with the modular synthesis of the diacids offers a facile tuning of the chemical environment within the pores. The PIZOF structure was solved from single-crystal X-ray diffraction analysis. The PIZOFs are stable under ambient conditions. PIZOF-2, the PIZOF prepared from HO(2)C[PE-P(OMe,OMe)-EP]CO(2)H, served as a prototype to determine thermal stability and porosity. It is stable up to 325 °C in air as determined by using thermogravimetry and powder X-ray diffraction. Argon sorption isotherms on PIZOF-2 revealed a Brunauer-Emmett-Teller (BET) surface area of 1250 m(2) g(-1) and a total pore volume of 0.68 cm(3) g(-1).


Chemical Physics Letters | 2000

Dipolar Spectroscopy and Spin Alignment in Electron Paramagnetic Resonance

Gunnar Jeschke; M. Pannier; Adelheid Godt; Hans Wolfgang Spiess

Abstract Two single-frequency techniques for refocusing (SIFTER) dipolar couplings between electron spins are introduced. The experiments are based on the solid-echo and Jeener–Broekaert sequences, well established in dipolar NMR spectroscopy of solids, and open up new routes to high-resolution two-dimensional EPR spectroscopy with only moderate requirements on the spectrometer. For distances between paramagnetic centres larger than 3 nm, SIFTER provides better resolution than double electron–electron resonance (DEER). Good agreement between distances from SIFTER measurements and force-field computations is found for shape-persistent biradicals with distances up to 5.1 nm corresponding to a dipolar frequency of 390 kHz.


Scientific Reports | 2012

A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy

Jinxuan Liu; Binit Lukose; Osama Shekhah; Hasan Arslan; Peter G. Weidler; Hartmut Gliemann; Stefan Bräse; Sylvain Grosjean; Adelheid Godt; Xinliang Feng; Klaus Müllen; Ioan-Bogdan Magdau; Thomas Heine; Christof Wöll

A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 × 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++)2- carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process.


Journal of the American Chemical Society | 2010

Flexibility of Shape-Persistent Molecular Building Blocks Composed of p-Phenylene and Ethynylene Units

Gunnar Jeschke; Muhammad Sajid; Miriam Schulte; Navid Ramezanian; Aleksei Volkov; Herbert Zimmermann; Adelheid Godt

Ethynylene and p-phenylene are frequently employed constitutional units in constructing the backbone of nanoscopic molecules with specific shape and mechanical or electronic function. How well these properties are defined depends on the flexibility of the backbone, which can be characterized via the end-to-end distance distribution. This distribution is accessible by pulse electron paramagnetic resonance (EPR) distance measurements between spin labels that are attached at the backbone. Four sets of oligomers with different sequences of p-phenylene and ethynylene units and different spin labels were prepared using polar tagging as a tool for simple isolation of the targeted compounds. By variation of backbone length, of the sequence of p-phenylene and ethynylene units, and of the spin labels a consistent coarse-grained model for backbone flexibility of oligo(p-phenyleneethynylene)s and oligo(p-phenylenebutadiynylene)s is obtained. The relation of this harmonic segmented chain model to the worm-like chain model for shape-persistent polymers and to atomistic molecular dynamics simulations is discussed. Oligo(p-phenylenebutadiynylene)s are found to be more flexible than oligo(p-phenyleneethynylene)s, but only slightly so. The end-to-end distance distribution measured in a glassy state of the solvent at a temperature of 50 K is found to depend on the glass transition temperature of the solvent. In the range between 91 and 373 K this dependence is in quantitative agreement with expectations for flexibility due to harmonic bending. For the persistence lengths at 298 K our data predict values of (13.8 +/- 1.5) nm for poly(p-phenyleneethynylene)s and of (11.8 +/- 1.5) nm for poly(p-phenylenebutadiynylene)s.


Journal of the American Chemical Society | 2014

Gd(III)-PyMTA Label Is Suitable for In-Cell EPR

Mian Qi; Andreas Groß; Gunnar Jeschke; Adelheid Godt; Malte Drescher

Distance measurement in the nanometer range by electron paramagnetic resonance spectroscopy (EPR) in combination with site-directed spin labeling is a very powerful tool to monitor the structure and dynamics of biomacromolecules in their natural environment. However, in-cell application is hampered by the short lifetime of the commonly used nitroxide spin labels in the reducing milieu inside a cell. Here, we demonstrate that the Gd(III) based spin label Gd-PyMTA is suitable for in-cell EPR. Gd-PyMTA turned out to be cell compatible and was proven to be inert in in-cell extracts of Xenopus laevis oocytes at 18 °C for more than 24 h. The proline rich peptide H-AP10CP10CP10-NH2 was site-directedly spin labeled with Gd-PyMTA at both cysteine moieties. The resulting peptide, H-AP10C(Gd-PyMTA)P10C(Gd-PyMTA)P10-NH2, as well as the model compound Gd-spacer-Gd, which consists of a spacer of well-known stiffness, were microinjected into Xenopus laevis oocytes, and the Gd(III)-Gd(III) distances were determined by double electron-electron resonance (DEER) spectroscopy. To analyze the intracellular peptide conformation, a rotamer library was set up to take the conformational flexibility of the tether between the Gd(III) ion and the Cα of the cysteine moiety into account. The results suggest that the spin labeled peptide H-AP10C(Gd-PyMTA)P10C(Gd-PyMTA)P10-NH2 is inserted into cell membranes, coinciding with a conformational change of the oligoproline from a PPII into a PPI helix.


Journal of Magnetic Resonance | 2015

Gd(III)-Gd(III) distance measurements with chirp pump pulses

Andrin Doll; Mian Qi; Nino Wili; Stephan Pribitzer; Adelheid Godt; Gunnar Jeschke

The broad EPR spectrum of Gd(III) spin labels restricts the dipolar modulation depth in distance measurements between Gd(III) pairs to a few percent. To overcome this limitation, frequency-swept chirp pulses are utilized as pump pulses in the DEER experiment. Using a model system with 3.4 nm Gd-Gd distance, application of one single chirp pump pulse at Q-band frequencies leads to modulation depths beyond 10%. However, the larger modulation depth is counteracted by a reduction of the absolute echo intensity due to the pump pulse. As supported by spin dynamics simulations, this effect is primarily driven by signal loss to double-quantum coherence and specific to the Gd(III) high spin state of S=7/2. In order to balance modulation depth and echo intensity for optimum sensitivity, a simple experimental procedure is proposed. An additional improvement by 25% in DEER sensitivity is achieved with two consecutive chirp pump pulses. These pulses pump the Gd(III) spectrum symmetrically around the observation position, therefore mutually compensating for dynamical Bloch-Siegert phase shifts at the observer spins. The improved sensitivity of the DEER data with modulation depths on the order of 20% is due to mitigation of the echo reduction effects by the consecutive pump pulses. In particular, the second pump pulse does not lead to additional signal loss if perfect inversion is assumed. Moreover, the compensation of the dynamical Bloch-Siegert phase prevents signal loss due to spatial dependence of the dynamical phase, which is caused by inhomogeneities in the driving field. The new methodology is combined with pre-polarization techniques to measure long distances up to 8.6 nm, where signal intensity and modulation depth become attenuated by long dipolar evolution windows. In addition, the influence of the zero-field splitting parameters on the echo intensity is studied with simulations. Herein, larger sensitivity is anticipated for Gd(III) complexes with zero-field splitting that is smaller than for the employed Gd-PyMTA complex.


Journal of Physical Chemistry Letters | 2014

RIDME Spectroscopy with Gd(III) Centers

Sahand Razzaghi; Mian Qi; Anna Nalepa; Adelheid Godt; Gunnar Jeschke; Anton Savitsky; Maxim Yulikov

The relaxation induced dipolar modulation enhancement (RIDME) technique is applied at W-band microwave frequencies around 94 GHz to a pair of Gd(III) complexes that are connected by a rodlike spacer, and the extraction of the interspin distance distribution is discussed. A dipolar pattern derived from RIDME experimental data is a superposition of Pake-like dipolar patterns corresponding to the fundamental dipolar interaction and higher harmonics thereof. Intriguingly, the relative weights of the stretched patterns do not depend significantly on mixing time. As much larger modulation depths can be achieved than in double electron-electron resonance distance measurements at the same frequency, Gd(III)-Gd(III) RIDME may become attractive for structural characterization of biomacromolecules and biomolecular complexes.

Collaboration


Dive into the Adelheid Godt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mian Qi

Bielefeld University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniella Goldfarb

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge