Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aditi Hazra is active.

Publication


Featured researches published by Aditi Hazra.


Human Molecular Genetics | 2010

Genome-wide association study of circulating vitamin D levels

Alison M. Mondul; Kai Yu; William Wheeler; Hong Zhang; Stephanie J. Weinstein; Jacqueline M. Major; Marilyn C. Cornelis; Satu Männistö; Aditi Hazra; Ann W. Hsing; Kevin B. Jacobs; Heather Eliassen; Toshiko Tanaka; Douglas J. Reding; Sara J. Hendrickson; Luigi Ferrucci; Jarmo Virtamo; David J. Hunter; Stephen J. Chanock; Peter Kraft; Demetrius Albanes

Retinol is one of the most biologically active forms of vitamin A and is hypothesized to influence a wide range of human diseases including asthma, cardiovascular disease, infectious diseases and cancer. We conducted a genome-wide association study of 5006 Caucasian individuals drawn from two cohorts of men: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study and the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. We identified two independent single-nucleotide polymorphisms associated with circulating retinol levels, which are located near the transthyretin (TTR) and retinol binding protein 4 (RBP4) genes which encode major carrier proteins of retinol: rs1667255 (P =2.30× 10−17) and rs10882272 (P =6.04× 10−12). We replicated the association with rs10882272 in RBP4 in independent samples from the Nurses’ Health Study and the Invecchiare in Chianti Study (InCHIANTI) that included 3792 women and 504 men (P =9.49× 10−5), but found no association for retinol with rs1667255 in TTR among women, thus suggesting evidence for gender dimorphism (P-interaction=1.31× 10−5). Discovery of common genetic variants associated with serum retinol levels may provide further insight into the contribution of retinol and other vitamin A compounds to the development of cancer and other complex diseases.


PLOS ONE | 2008

Comprehensive Biostatistical Analysis of CpG Island Methylator Phenotype in Colorectal Cancer Using a Large Population-Based Sample

Katsuhiko Nosho; Natsumi Irahara; Kaori Shima; Shoko Kure; Gregory J. Kirkner; Eva S. Schernhammer; Aditi Hazra; David J. Hunter; John Quackenbush; Donna Spiegelman; Edward Giovannucci; Charles S. Fuchs; Shuji Ogino

Background The CpG island methylator phenotype (CIMP) is a distinct phenotype associated with microsatellite instability (MSI) and BRAF mutation in colon cancer. Recent investigations have selected 5 promoters (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1) as surrogate markers for CIMP-high. However, no study has comprehensively evaluated an expanded set of methylation markers (including these 5 markers) using a large number of tumors, or deciphered the complex clinical and molecular associations with CIMP-high determined by the validated marker panel. Metholodology/Principal Findings DNA methylation at 16 CpG islands [the above 5 plus CDKN2A (p16), CHFR, CRABP1, HIC1, IGFBP3, MGMT, MINT1, MINT31, MLH1, p14 (CDKN2A/ARF) and WRN] was quantified in 904 colorectal cancers by real-time PCR (MethyLight). In unsupervised hierarchical clustering analysis, the 5 markers (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1), CDKN2A, CRABP1, MINT31, MLH1, p14 and WRN were generally clustered with each other and with MSI and BRAF mutation. KRAS mutation was not clustered with any methylation marker, suggesting its association with a random methylation pattern in CIMP-low tumors. Utilizing the validated CIMP marker panel (including the 5 markers), multivariate logistic regression demonstrated that CIMP-high was independently associated with older age, proximal location, poor differentiation, MSI-high, BRAF mutation, and inversely with LINE-1 hypomethylation and β-catenin (CTNNB1) activation. Mucinous feature, signet ring cells, and p53-negativity were associated with CIMP-high in only univariate analysis. In stratified analyses, the relations of CIMP-high with poor differentiation, KRAS mutation and LINE-1 hypomethylation significantly differed according to MSI status. Conclusions Our study provides valuable data for standardization of the use of CIMP-high-specific methylation markers. CIMP-high is independently associated with clinical and key molecular features in colorectal cancer. Our data also suggest that KRAS mutation is related with a random CpG island methylation pattern which may lead to CIMP-low tumors.


The Journal of Molecular Diagnostics | 2010

Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells

Natsumi Irahara; Katsuhiko Nosho; Yoshifumi Baba; Kaori Shima; Neal I. Lindeman; Aditi Hazra; Eva S. Schernhammer; David J. Hunter; Charles S. Fuchs; Shuji Ogino

Genome-wide DNA hypomethylation plays an important role in epigenomic and genomic instability and colorectal carcinogenesis. DNA methylation in the long interspersed nucleotide element-1, L1 (LINE-1) repetitive element is a good indicator of global DNA methylation level. In addition, LINE-1 hypomethylation in blood cells has been associated with colorectal adenoma risk, and LINE-1 hypomethylation in colorectal cancer is related with prognosis and linearly predicts shorter patient survival. However, no study has comprehensively evaluated the precision of sodium bisulfite conversion and PCR-pyrosequencing to measure LINE-1 methylation. Using 10 paraffin-embedded colon cancers, 5 matched normal colon mucosa, and 5 unrelated peripheral blood buffy coat leukocyte specimens, we enriched tumor DNA by macrodissection and laser capture microdissection. LINE-1 methylation was calculated as an average of 100 * C/(C + T) at 4 CpG sites after bisulfite-PCR-pyrosequencing. The LINE-1 methylation value in colon cancers varied, ranging approximately from 30 to 80. To measure assay precision, we performed bisulfite conversion on seven different DNA specimen aliquots and repeated PCR-pyrosequencing seven times. Run-to-run (between-run) SD ranged from 1.3 to 4.4 (median, 3.0) in macrodissected colon cancers; 1.1 to 10.5 (median, 3.8) in laser capture microdissection specimens; 1.3 to 2.5 (median, 1.9) in normal colon; and 1.5 to 3.4 (median, 1.9) in leukocyte DNA. In conclusion, bisulfite conversion and PCR-pyrosequencing assay can measure LINE-1 methylation in macrodissected colon cancer, normal colon, and blood DNA, and may be useful in clinical and research settings.


Molecular Cancer | 2010

Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors

Yoshifumi Baba; Curtis Huttenhower; Katsuhiko Nosho; Noriko Tanaka; Kaori Shima; Aditi Hazra; Eva S. Schernhammer; David J. Hunter; Edward Giovannucci; Charles S. Fuchs; Shuji Ogino

BackgroundGenome-wide DNA hypomethylation plays a role in genomic instability and carcinogenesis. LINE-1 (L1 retrotransposon) constitutes a substantial portion of the human genome, and LINE-1 methylation correlates with global DNA methylation status. LINE-1 hypomethylation in colon cancer has been strongly associated with poor prognosis. However, whether LINE-1 hypomethylators constitute a distinct cancer subtype remains uncertain. Recent evidence for concordant LINE-1 hypomethylation within synchronous colorectal cancer pairs suggests the presence of a non-stochastic mechanism influencing tumor LINE-1 methylation level. Thus, it is of particular interest to examine whether its wide variation can be attributed to clinical, pathologic or molecular features.DesignUtilizing a database of 869 colorectal cancers in two prospective cohort studies, we constructed multivariate linear and logistic regression models for LINE-1 methylation (quantified by Pyrosequencing). Variables included age, sex, body mass index, family history of colorectal cancer, smoking status, tumor location, stage, grade, mucinous component, signet ring cells, tumor infiltrating lymphocytes, CpG island methylator phenotype (CIMP), microsatellite instability, expression of TP53 (p53), CDKN1A (p21), CTNNB1 (β-catenin), PTGS2 (cyclooxygenase-2), and FASN, and mutations in KRAS, BRAF, and PIK3CA.ResultsTumoral LINE-1 methylation ranged from 23.1 to 90.3 of 0-100 scale (mean 61.4; median 62.3; standard deviation 9.6), and distributed approximately normally except for extreme hypomethylators [LINE-1 methylation < 40; N = 22 (2.5%), which were far more than what could be expected by normal distribution]. LINE-1 extreme hypomethylators were significantly associated with younger patients (p = 0.0058). Residual plot by multivariate linear regression showed that LINE-1 extreme hypomethylators clustered as one distinct group, separate from the main tumor group. The multivariate linear regression model could explain 8.4% of the total variability of LINE-1 methylation (R-square = 0.084). Multivariate logistic regression models for binary LINE-1 hypomethylation outcomes (cutoffs of 40, 50 and 60) showed at most fair predictive ability (area under receiver operator characteristics curve < 0.63).ConclusionsLINE-1 extreme hypomethylators appear to constitute a previously-unrecognized, distinct subtype of colorectal cancers, which needs to be confirmed by additional studies. Our tumor LINE-1 methylation data indicate enormous epigenomic diversity of individual colorectal cancers.


Nature Genetics | 2011

Common variants in ZNF365 are associated with both mammographic density and breast cancer risk

Sara Lindström; Celine M. Vachon; Jingmei Li; Jajini S. Varghese; Deborah Thompson; Ruth Warren; Judith E. Brown; Jean Leyland; Tina Audley; Nicholas J. Wareham; Ruth J. F. Loos; Andrew D. Paterson; Johanna M. Rommens; Darryl Waggott; Lisa Martin; Christopher G. Scott; V. Shane Pankratz; Susan E. Hankinson; Aditi Hazra; David J. Hunter; John L. Hopper; Melissa C. Southey; Stephen J. Chanock; Isabel dos Santos Silva; Jianjun Liu; Louise Eriksson; Fergus J. Couch; Jennifer Stone; Carmel Apicella; Kamila Czene

High-percent mammographic density adjusted for age and body mass index is one of the strongest risk factors for breast cancer. We conducted a meta analysis of five genome-wide association studies of percent mammographic density and report an association with rs10995190 in ZNF365 (combined P = 9.6 × 10−10). Common variants in ZNF365 have also recently been associated with susceptibility to breast cancer.


Cancer Research | 2012

Characterization of Gene–Environment Interactions for Colorectal Cancer Susceptibility Loci

Carolyn M. Hutter; Jenny Chang-Claude; Martha L. Slattery; Bethann M. Pflugeisen; Yi Lin; David Duggan; Hongmei Nan; Mathieu Lemire; Jagadish Rangrej; Jane C. Figueiredo; Tabitha A. Harrison; Yan Liu; Lin Chen; Deanna L. Stelling; Greg S. Warnick; Michael Hoffmeister; Sébastien Küry; Charles S. Fuchs; Edward Giovannucci; Aditi Hazra; Peter Kraft; David J. Hunter; Steven Gallinger; Brent W. Zanke; Hermann Brenner; Bernd Frank; Jing Ma; Cornelia M. Ulrich; Emily White; Polly A. Newcomb

Genome-wide association studies (GWAS) have identified more than a dozen loci associated with colorectal cancer (CRC) risk. Here, we examined potential effect-modification between single-nucleotide polymorphisms (SNP) at 10 of these loci and probable or established environmental risk factors for CRC in 7,016 CRC cases and 9,723 controls from nine cohort and case-control studies. We used meta-analysis of an efficient empirical-Bayes estimator to detect potential multiplicative interactions between each of the SNPs [rs16892766 at 8q23.3 (EIF3H/UTP23), rs6983267 at 8q24 (MYC), rs10795668 at 10p14 (FLJ3802842), rs3802842 at 11q23 (LOC120376), rs4444235 at 14q22.2 (BMP4), rs4779584 at 15q13 (GREM1), rs9929218 at 16q22.1 (CDH1), rs4939827 at 18q21 (SMAD7), rs10411210 at 19q13.1 (RHPN2), and rs961253 at 20p12.3 (BMP2)] and select major CRC risk factors (sex, body mass index, height, smoking status, aspirin/nonsteroidal anti-inflammatory drug use, alcohol use, and dietary intake of calcium, folate, red meat, processed meat, vegetables, fruit, and fiber). The strongest statistical evidence for a gene-environment interaction across studies was for vegetable consumption and rs16892766, located on chromosome 8q23.3, near the EIF3H and UTP23 genes (nominal P(interaction) = 1.3 × 10(-4); adjusted P = 0.02). The magnitude of the main effect of the SNP increased with increasing levels of vegetable consumption. No other interactions were statistically significant after adjusting for multiple comparisons. Overall, the association of most CRC susceptibility loci identified in initial GWAS seems to be invariant to the other risk factors considered; however, our results suggest potential modification of the rs16892766 effect by vegetable consumption.


Clinical Cancer Research | 2009

DNMT3B Expression Might Contribute to CpG Island Methylator Phenotype in Colorectal Cancer

Katsuhiko Nosho; Kaori Shima; Natsumi Irahara; Shoko Kure; Yoshifumi Baba; Gregory J. Kirkner; Li Chen; Sumita Gokhale; Aditi Hazra; Donna Spiegelman; Edward Giovannucci; Rudolf Jaenisch; Charles S. Fuchs; Shuji Ogino

Purpose: DNA methyltransferase-3B (DNMT3B) plays an important role in de novo CpG island methylation. Dnmt3b can induce colon tumor in mice with methylation in specific CpG islands. We hypothesized that cellular DNMT3B level might influence the occurrence of widespread CpG island methylation (i.e., the CpG island methylator phenotype, CIMP) in colon cancer. Experimental Design: Utilizing 765 colorectal cancers in two cohort studies, we detected DNMT3B expression in 116 (15%) tumors by immunohistochemistry. We assessed microsatellite instability, quantified DNA methylation in repetitive long interspersed nucleotide element-1 (LINE-1) by Pyrosequencing, eight CIMP-specific promoters [CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1], and eight other CpG islands (CHFR, HIC1, IGFBP3, MGMT, MINT1, MINT31, p14, and WRN) by real-time PCR (MethyLight). Results: Tumoral DNMT3B overexpression was significantly associated with CIMP-high [≥6/8 methylated CIMP-specific promoters; odds ratio (OR), 3.34; 95% confidence interval, 2.11-5.29; P < 0.0001]. The relations between DNMT3B and methylation in 16 individual CpG islands varied substantially (OR, 0.80-2.96), suggesting variable locus-to-locus specificities of DNMT3B activity. DNMT3B expression was not significantly related with LINE-1 hypomethylation. In multivariate logistic regression, the significant relation between DNMT3B and CIMP-high persisted (OR, 2.39; 95% confidence interval, 1.11-5.14; P = 0.026) after adjusting for clinical and other molecular features, including p53, β-catenin, LINE-1, microsatellite instability, KRAS, PIK3CA, and BRAF. DNMT3B expression was unrelated with patient outcome, survival, or prognosis. Conclusions: Tumoral DNMT3B overexpression is associated with CIMP-high in colorectal cancer. Our data support a possible role of DNMT3B in nonrandom de novo CpG island methylation leading to colorectal cancer.


Modern Pathology | 2009

SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer

Katsuhiko Nosho; Kaori Shima; Natsumi Irahara; Shoko Kure; Ron Firestein; Yoshifumi Baba; Saori Toyoda; Li Chen; Aditi Hazra; Edward Giovannucci; Charles S. Fuchs; Shuji Ogino

The class III histone deacetylase SIRT1 (sir2) is important in epigenetic gene silencing. Inhibition of SIRT1 reactivates silenced genes, suggesting a possible therapeutic approach of targeted reversal of aberrantly silenced genes. In addition, SIRT1 may be involved in the well-known link between obesity, cellular energy balance and cancer. However, a comprehensive study of SIRT1 using human cancer tissue with clinical outcome data is currently lacking, and its prognostic significance is uncertain. Using the database of 485 colorectal cancers in two independent prospective cohort studies, we detected SIRT1 overexpression in 180 (37%) tumors by immunohistochemistry. We examined its relationship to the CpG island methylator phenotype (CIMP), related molecular events, clinical features including body mass index, and patient survival. We quantified DNA methylation in eight CIMP-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1) and eight other CpG islands (CHFR, HIC1, IGFBP3, MGMT, MINT1, MINT31, p14, and WRN) by MethyLight. SIRT1 overexpression was associated with CIMP-high (≥6 of 8 methylated CIMP-specific promoters, P=0.002) and microsatellite instability (MSI)-high phenotype (P<0.0001). In both univariate and multivariate analyses, SIRT1 overexpression was significantly associated with the CIMP-high MSI-high phenotype (multivariate odds ratio, 3.20; 95% confidence interval, 1.35–7.59; P=0.008). In addition, mucinous component (P=0.01), high tumor grade (P=0.02), and fatty acid synthase overexpression (P=0.04) were significantly associated with SIRT positivity in multivariate analysis. SIRT1 was not significantly related with age, sex, tumor location, stage, signet ring cells, cyclooxygenase-2 (COX-2), LINE-1 hypomethylation, KRAS, BRAF, BMI, PIK3CA, HDAC, p53, β-catenin, COX-2, or patient prognosis. In conclusion, SIRT1 expression is associated with CIMP-high MSI-high colon cancer, suggesting involvement of SIRT1 in gene silencing in this unique tumor subtype.


The American Journal of Clinical Nutrition | 2013

Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease

Joyce B. J. van Meurs; Guillaume Paré; Stephen M. Schwartz; Aditi Hazra; Toshiko Tanaka; Sita H. Vermeulen; Ioana Cotlarciuc; Xin Yuan; Anders Mälarstig; Stefania Bandinelli; Joshua C. Bis; Henk J. Blom; Morris J. Brown; Constance Chen; Yii Der Chen; Robert Clarke; Abbas Dehghan; Jeanette Erdmann; Luigi Ferrucci; Anders Hamsten; Albert Hofman; David J. Hunter; Anuj Goel; Andrew D. Johnson; Sekar Kathiresan; Ellen Kampman; Douglas P. Kiel; Lambertus A. Kiemeney; John Chambers; Peter Kraft

BACKGROUND The strong observational association between total homocysteine (tHcy) concentrations and risk of coronary artery disease (CAD) and the null associations in the homocysteine-lowering trials have prompted the need to identify genetic variants associated with homocysteine concentrations and risk of CAD. OBJECTIVE We tested whether common genetic polymorphisms associated with variation in tHcy are also associated with CAD. DESIGN We conducted a meta-analysis of genome-wide association studies (GWAS) on tHcy concentrations in 44,147 individuals of European descent. Polymorphisms associated with tHcy (P < 10(⁻⁸) were tested for association with CAD in 31,400 cases and 92,927 controls. RESULTS Common variants at 13 loci, explaining 5.9% of the variation in tHcy, were associated with tHcy concentrations, including 6 novel loci in or near MMACHC (2.1 × 10⁻⁹), SLC17A3 (1.0 × 10⁻⁸), GTPB10 (1.7 × 10⁻⁸), CUBN (7.5 × 10⁻¹⁰), HNF1A (1.2 × 10⁻¹²)), and FUT2 (6.6 × 10⁻⁹), and variants previously reported at or near the MTHFR, MTR, CPS1, MUT, NOX4, DPEP1, and CBS genes. Individuals within the highest 10% of the genotype risk score (GRS) had 3-μmol/L higher mean tHcy concentrations than did those within the lowest 10% of the GRS (P = 1 × 10⁻³⁶). The GRS was not associated with risk of CAD (OR: 1.01; 95% CI: 0.98, 1.04; P = 0.49). CONCLUSIONS We identified several novel loci that influence plasma tHcy concentrations. Overall, common genetic variants that influence plasma tHcy concentrations are not associated with risk of CAD in white populations, which further refutes the causal relevance of moderately elevated tHcy concentrations and tHcy-related pathways for CAD.


Human Molecular Genetics | 2008

Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk

Sonja I. Berndt; John D. Potter; Aditi Hazra; Meredith Yeager; Gilles Thomas; Karen W. Makar; Robert Welch; Amanda J. Cross; Wen Yi Huang; Robert E. Schoen; Edward Giovannucci; Andrew T. Chan; Stephen J. Chanock; Ulrike Peters; David J. Hunter; Richard B. Hayes

Several different genetic variants at chromosome 8q24 have been related to prostate, breast and colorectal cancer risk with evidence of region-specific risk differentials for various tumor types. We investigated the association between 15 polymorphisms located in 8q24 regions associated with cancer risk in a pooled analysis of 2587 colorectal adenoma cases, 547 colorectal cancer cases and 2798 controls of European descent from four studies. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) for the associations. Three polymorphisms (rs10808555, rs6983267 and rs7837328) located between 128.47 and 128.54 Mb were found to be associated with colorectal tumor risk. The association was strongest for the previously reported rs6983267 variant and was similar for both adenoma (OR(per allele) = 1.16, 95% CI: 1.07-1.25, P = 0.0002) and cancer (OR (per allele) = 1.17, 95% CI: 1.01-1.35, P = 0.03). The strength of the association of the regional haplotype containing variant alleles at rs10808555, rs6983267 and rs7837328 but not rs10505476 was greater than that of any single variant of both adenoma (OR = 1.27, P = 0.0001) and cancer (OR = 1.26, P = 0.03). The risk associated with rs6983267 was stronger for multiple adenomas (OR(per allele) = 1.29, P = 5.6 x 10(-6)) than for single adenoma (OR(per allele) = 1.10, P = 0.03) with P(heterogeneity) = 0.008. This study confirms the association between colorectal neoplasia and the 8q24 polymorphisms located between 128.47 and 128.54 Mb and suggests a role for these variants in the formation of multiple adenomas.

Collaboration


Dive into the Aditi Hazra's collaboration.

Top Co-Authors

Avatar

David J. Hunter

Royal North Shore Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew H. Beck

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Susan E. Hankinson

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge