Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Kraft is active.

Publication


Featured researches published by Peter Kraft.


PLOS Biology | 2010

Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration

Christoph Kleinschnitz; Henrike Grund; Kirstin Wingler; Melanie E. Armitage; Emma S. Jones; Manish Mittal; David Barit; Tobias Schwarz; Christian Geis; Peter Kraft; Konstanze Barthel; Michael K. Schuhmann; Alexander M. Herrmann; Sven G. Meuth; Guido Stoll; Sabine Meurer; Anja Schrewe; Lore Becker; Valérie Gailus-Durner; Helmut Fuchs; Thomas Klopstock; Martin Hrabé de Angelis; Karin Jandeleit-Dahm; Ajay M. Shah; Norbert Weissmann; Harald Schmidt

The identification of NOX4 as a major source of oxidative stress in stroke and demonstration of dramatic protection after stroke in mice by NOX4 deletion or NOX inhibition, opens up new avenues for treatment.


JAMA | 2015

Anticoagulant Reversal, Blood Pressure Levels, and Anticoagulant Resumption in Patients With Anticoagulation-Related Intracerebral Hemorrhage

Joji B. Kuramatsu; Stefan T. Gerner; Peter D. Schellinger; Jörg Glahn; Matthias Endres; Jan Sobesky; Julia Flechsenhar; Hermann Neugebauer; Eric Jüttler; Armin J. Grau; Frederick Palm; Joachim Röther; Peter Michels; Gerhard F. Hamann; Joachim Hüwel; Georg Hagemann; Beatrice Barber; Christoph Terborg; Frank Trostdorf; Hansjörg Bäzner; Aletta Roth; Johannes C. Wöhrle; Moritz Keller; Michael Schwarz; Gernot Reimann; Jens Volkmann; Wolfgang Müllges; Peter Kraft; Joseph Classen; Carsten Hobohm

IMPORTANCE Although use of oral anticoagulants (OACs) is increasing, there is a substantial lack of data on how to treat OAC-associated intracerebral hemorrhage (ICH). OBJECTIVE To assess the association of anticoagulation reversal and blood pressure (BP) with hematoma enlargement and the effects of OAC resumption. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study at 19 German tertiary care centers (2006-2012) including 1176 individuals for analysis of long-term functional outcome, 853 for analysis of hematoma enlargement, and 719 for analysis of OAC resumption. EXPOSURES Reversal of anticoagulation during acute phase, systolic BP at 4 hours, and reinitiation of OAC for long-term treatment. MAIN OUTCOMES AND MEASURES Frequency of hematoma enlargement in relation to international normalized ratio (INR) and BP. Incidence analysis of ischemic and hemorrhagic events with or without OAC resumption. Factors associated with favorable (modified Rankin Scale score, 0-3) vs unfavorable functional outcome. RESULTS Hemorrhage enlargement occurred in 307 of 853 patients (36.0%). Reduced rates of hematoma enlargement were associated with reversal of INR levels <1.3 within 4 hours after admission (43/217 [19.8%]) vs INR of ≥1.3 (264/636 [41.5%]; P < .001) and systolic BP <160 mm Hg at 4 hours (167/504 [33.1%]) vs ≥160 mm Hg (98/187 [52.4%]; P < .001). The combination of INR reversal <1.3 within 4 hours and systolic BP of <160 mm Hg at 4 hours was associated with lower rates of hematoma enlargement (35/193 [18.1%] vs 220/498 [44.2%] not achieving these values; OR, 0.28; 95% CI, 0.19-0.42; P < .001) and lower rates of in-hospital mortality (26/193 [13.5%] vs 103/498 [20.7%]; OR, 0.60; 95% CI, 0.37-0.95; P = .03). OAC was resumed in 172 of 719 survivors (23.9%). OAC resumption showed fewer ischemic complications (OAC: 9/172 [5.2%] vs no OAC: 82/547 [15.0%]; P < .001) and not significantly different hemorrhagic complications (OAC: 14/172 [8.1%] vs no OAC: 36/547 [6.6%]; P = .48). Propensity-matched survival analysis in patients with atrial fibrillation who restarted OAC showed a decreased HR of 0.258 (95% CI, 0.125-0.534; P < .001) for long-term mortality. Functional long-term outcome was unfavorable in 786 of 1083 patients (72.6%). CONCLUSIONS AND RELEVANCE Among patients with OAC-associated ICH, reversal of INR <1.3 within 4 hours and systolic BP <160 mm Hg at 4 hours were associated with lower rates of hematoma enlargement, and resumption of OAC therapy was associated with lower risk of ischemic events. These findings require replication and assessment in prospective studies. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01829581.


Blood | 2013

Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature

Christoph Kleinschnitz; Peter Kraft; Angela Dreykluft; Ina Hagedorn; Kerstin Göbel; Michael K. Schuhmann; Friederike Langhauser; Xavier Helluy; Tobias Schwarz; Stefan Bittner; Christian T. Mayer; Marc Brede; Csanad Varallyay; Mirko Pham; Martin Bendszus; Peter M. Jakob; Tim Magnus; Sven G. Meuth; Yoichiro Iwakura; Alma Zernecke; Tim Sparwasser; Bernhard Nieswandt; Guido Stoll; Heinz Wiendl

We have recently identified T cells as important mediators of ischemic brain damage, but the contribution of the different T-cell subsets is unclear. Forkhead box P3 (FoxP3)-positive regulatory T cells (Tregs) are generally regarded as prototypic anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. In the present study, we examined the role of Tregs after experimental brain ischemia/reperfusion injury. Selective depletion of Tregs in the DEREG mouse model dramatically reduced infarct size and improved neurologic function 24 hours after stroke and this protective effect was preserved at later stages of infarct development. The specificity of this detrimental Treg effect was confirmed by adoptive transfer experiments in wild-type mice and in Rag1(-/-) mice lacking lymphocytes. Mechanistically, Tregs induced microvascular dysfunction in vivo by increased interaction with the ischemic brain endothelium via the LFA-1/ICAM-1 pathway and platelets and these findings were confirmed in vitro. Ablation of Tregs reduced microvascular thrombus formation and improved cerebral reperfusion on stroke, as revealed by ultra-high-field magnetic resonance imaging at 17.6 Tesla. In contrast, established immunoregulatory characteristics of Tregs had no functional relevance. We define herein a novel and unexpected role of Tregs in a primary nonimmunologic disease state.


Blood | 2013

Only severe thrombocytopenia results in bleeding and defective thrombus formation in mice.

Martina Morowski; Timo Vögtle; Peter Kraft; Christoph Kleinschnitz; Guido Stoll; Bernhard Nieswandt

Platelets are essential mediators of hemostasis and thrombosis. Platelet counts (PCs) in humans average 250 platelets/nL, but it is not entirely clear how platelet numbers affect hemostasis and occurrence of thrombotic events. Mice, displaying PCs of ~1000 platelets/nL, are widely used to assess platelet function in (patho-)physiology, but also in this species, the significance of PC for hemostasis and thrombotic disease is not established. We reduced PCs in mice to defined ranges between 0 and 1000 platelets/nL by platelet-depleting antibodies and challenged them in different arterial thrombosis models: the transient middle cerebral artery occlusion (tMCAO) stroke model and tail bleeding experiments. We show that thrombotic occlusion of the injured aorta and the carotid artery were partially impaired when PCs were reduced by 70% or 80%, respectively. In contrast, tail bleeding times and thrombus formation in small arterioles were largely unaffected by reductions of PC up to 97.5%. Similarly, infarct growth and neurological deficits after tMCAO were unaffected by reductions of PCs up to 90%, whereas a further reduction was protective. These results reveal that arterial thrombosis, cerebral infarction, and hemostasis in mice efficiently occur at unexpectedly low PCs, which may have implications for humans at risk of thrombotic or hemorrhagic disease.


Stroke | 2011

Glucocorticoid Insensitivity at the Hypoxic Blood–Brain Barrier Can Be Reversed by Inhibition of the Proteasome

Christoph Kleinschnitz; Kinga G. Blecharz; Timo Kahles; Tobias Schwarz; Peter Kraft; Kerstin Göbel; Sven G. Meuth; Malgorzata Burek; Thomas Thum; Guido Stoll; Carola Förster

Background and Purpose— Glucocorticoids potently stabilize the blood–brain barrier and ameliorate tissue edema in certain neoplastic and inflammatory disorders of the central nervous system, but they are largely ineffective in patients with acute ischemic stroke. The reasons for this discrepancy are unresolved. Methods— To address the molecular basis for the paradox unresponsiveness of the blood–brain barrier during hypoxia, we used murine brain microvascular endothelial cells exposed to O2/glucose deprivation as an in vitro model. In an in vivo approach, mice were subjected to transient middle cerebral artery occlusion to induce brain infarctions. Blood–brain barrier damage and edema formation were chosen as surrogate markers of glucocorticoid sensitivity in the presence or absence of proteasome inhibitors. Results— O2/glucose deprivation reduced the expression of tight junction proteins and transendothelial resistance in murine brain microvascular endothelial cells in vitro. Dexamethasone treatment failed to reverse these effects during hypoxia. Proteasome-dependent degradation of the glucocorticoid receptor impaired glucocorticoid receptor transactivation thereby preventing physiological glucocorticoid activity. Inhibition of the proteasome, however, fully restored the blood–brain barrier stabilizing properties of glucocorticoid during O2/glucose deprivation. Importantly, mice treated with the proteasome inhibitor Bortezomib in combination with steroids several hours after stroke developed significantly less brain edema and functional deficits, whereas respective monotherapies were ineffective. Conclusions— We for the first time show that inhibition of the proteasome can overcome glucocorticoid resistance at the hypoxic blood–brain barrier. Hence, combined treatment strategies may help to combat stroke-induced brain edema formation in the future and prevent secondary clinical deterioration.


Journal of Cerebral Blood Flow and Metabolism | 2015

CD28 superagonist-mediated boost of regulatory T cells increases thrombo-inflammation and ischemic neurodegeneration during the acute phase of experimental stroke.

Michael K. Schuhmann; Peter Kraft; Guido Stoll; Kristina Lorenz; Sven G. Meuth; Heinz Wiendl; Bernhard Nieswandt; Tim Sparwasser; Niklas Beyersdorf; Thomas Kerkau; Christoph Kleinschnitz

While the detrimental role of non-regulatory T cells in ischemic stroke is meanwhile unequivocally recognized, there are controversies about the properties of regulatory T cells (Treg). The aim of this study was to elucidate the role of Treg by applying superagonistic anti-CD28 antibody expansion of Treg. Stroke outcome, thrombus formation, and brain-infiltrating cells were determined on day 1 after transient middle cerebral artery occlusion. Antibody-mediated expansion of Treg enhanced stroke size and worsened functional outcome. Mechanistically, Treg increased thrombus formation in the cerebral microvasculature. These findings confirm that Treg promote thrombo-inflammatory lesion growth during the acute stage of ischemic stroke.


PLOS ONE | 2010

Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) Deficient Mice Are Susceptible to Intracerebral Thrombosis and Ischemic Stroke

Peter Kraft; Tobias Schwarz; Joost C. M. Meijers; Guido Stoll; Christoph Kleinschnitz

Background Thrombus formation is a key step in the pathophysiology of acute ischemic stroke and results from the activation of the coagulation cascade. Thrombin plays a central role in this coagulation system and contributes to thrombus stability via activation of thrombin-activatable fibrinolysis inhibitor (TAFIa). TAFIa counteracts endogenous fibrinolysis at different stages and elevated TAFI levels are a risk factor for thrombotic events including ischemic stroke. Although substantial in vitro data on the influence of TAFI on the coagulation-fibrinolysis-system exist, investigations on the consequences of TAFI inhibition in animal models of cerebral ischemia are still lacking. In the present study we analyzed stroke development and post stroke functional outcome in TAFI-/- mice. Methodology/Principal Findings TAFI-/- mice and wild-type controls were subjected to 60 min transient middle cerebral artery occlusion (tMCAO) using the intraluminal filament method. After 24 hours, functional outcome scores were assessed and infarct volumes were measured from 2,3,5-Triphenyltetrazoliumchloride (TTC)-stained brain slices. Hematoxylin and eosin (H&E) staining was used to estimate the extent of neuronal cell damage. Thrombus formation within the infarcted brain areas was analyzed by immunoblot. Infarct volumes and functional outcomes did not significantly differ between TAFI-/- mice and controls (p>0.05). Histology revealed extensive ischemic neuronal damage regularly including the cortex and the basal ganglia in both groups. TAFI deficiency also had no influence on intracerebral fibrin(ogen) formation after tMCAO. Conclusion Our study shows that TAFI does not play a major role for thrombus formation and neuronal degeneration after ischemic brain challenge.


PLOS ONE | 2011

Sustained Reperfusion after Blockade of Glycoprotein-Receptor-Ib in Focal Cerebral Ischemia: An MRI Study at 17.6 Tesla

Mirko Pham; Xavier Helluy; Christoph Kleinschnitz; Peter Kraft; Andreas J. Bartsch; Peter M. Jakob; Bernhard Nieswandt; Martin Bendszus; Guido Stoll

Background Inhibition of early platelet adhesion by blockade of glycoprotein-IB (GPIb) protects mice from ischemic stroke. To elucidate underlying mechanisms in-vivo, infarct development was followed by ultra-high field MRI at 17.6 Tesla. Methods Cerebral infarction was induced by transient-middle-cerebral-artery-occlusion (tMCAO) for 1 hour in C57/BL6 control mice (N = 10) and mice treated with 100 µg Fab-fragments of the GPIb blocking antibody p0p/B 1 h after tMCAO (N = 10). To control for the effect of reperfusion, additional mice underwent permanent occlusion and received anti-GPIb treatment (N = 6; pMCAO) or remained without treatment (N = 3; pMCAO). MRI 2 h and 24 h after MCAO measured cerebral-blood-flow (CBF) by continuous arterial-spin labelling, the apparent-diffusion-coefficient (ADC), quantitative-T2 and T2-weighted imaging. All images were registered to a standard mouse brain MRI atlas and statistically analysed voxel-wise, and by cortico-subcortical ROI analysis. Results Anti-GPIb treatment led to a relative increase of postischemic CBF vs. controls in the cortical territory of the MCA (2 h: 44.2±6.9 ml/100 g/min versus 24 h: 60.5±8.4; p = 0.0012, F(1,18) = 14.63) after tMCAO. Subcortical CBF 2 h after tMCAO was higher in anti-GPIb treated animals (45.3±5.9 vs. controls: 33.6±4.3; p = 0.04). In both regions, CBF findings were clearly related to a lower probability of infarction (Cortex/Subcortex of treated group: 35%/65% vs. controls: 95%/100%) and improved quantitative-T2 and ADC. After pMCAO, anti-GPIb treated mice developed similar infarcts preceded by severe irreversible hypoperfusion as controls after tMCAO indicating dependency of stroke protection on reperfusion. Conclusion Blockade of platelet adhesion by anti-GPIb-Fab-fragments results in substantially improved CBF early during reperfusion. This finding was in exact spatial correspondence with the prevention of cerebral infarction and indicates in-vivo an increased patency of the microcirculation. Thus, progression of infarction during early ischemia and reperfusion can be mitigated by anti-platelet treatment.


Journal of Thrombosis and Haemostasis | 2012

Redundant functions of phospholipases D1 and D2 in platelet α-granule release.

Ina Thielmann; David Stegner; Peter Kraft; Ina Hagedorn; Georg Krohne; Christoph Kleinschnitz; Guido Stoll; Bernhard Nieswandt

Summary.  Background: Platelet activation and aggregation are crucial for primary hemostasis, but can also result in occlusive thrombus formation. Agonist‐induced platelet activation involves different signaling pathways leading to the activation of phospholipases, which produce second messengers. The role of phospholipase C (PLC) in platelet activation is well established, but less is known about the relevance of phospholipase D (PLD) .


Journal of Thrombosis and Haemostasis | 2013

Munc13-4-mediated secretion is essential for infarct progression but not intracranial hemostasis in acute stroke

David Stegner; C. Deppermann; Peter Kraft; M. Morowski; Christoph Kleinschnitz; Guido Stoll; Bernhard Nieswandt

tion Score. J Thromb Haemost 2010; 8: 2450–7. 10 Kahn SR, Lim W, Dunn AS, Cushman M, Dentali F, Akl EA, Cook DJ, Balekian AA, Klein RC, Le H, Schulman S, Murad MH. Prevention of VTE in nonsurgical patients: Antithrombotic therapy and prevention of thrombosis, 9th edn: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 2(Suppl): e195–226S. 11 Wells PS, Anderson DR, Rodger M, Forgie M, Kearon C, Dreyer J, Kovacs G, Mitchell M, Lewandowski B, Kovacs MJ. Evaluation of D+dimer in the diagnosis of suspected deep vein thrombosis. N Engl J Med 2003; 349: 1227–35. 12 van Belle A, Buller HR, Huisman MV, Huisman PM, Kaasjager K, Kamphuisen PW, Kramer MH, Kruip MJ, Kwakkelvan Erp JM, Leebeek FW, Nijkeuter M, Prins MH, Sohne M, Tick LW. Effectiveness of managing suspected pulmonary embolism using an algorithm combining clinical probability, D-dimer testing, and computed tomography. JAMA 2006; 295: 172–9.

Collaboration


Dive into the Peter Kraft's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Stoll

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Brede

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ina Hagedorn

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge