Aditya Mittal
Indian Institute of Technology Delhi
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aditya Mittal.
Journal of Biomolecular Structure & Dynamics | 2010
Aditya Mittal; B. Jayaram; Sandhya R. Shenoy; Tejdeep Singh Bawa
Abstract Protein folding is at least a six decade old problem, since the times of Pauling and Anfinsen. However, rules of protein folding remain elusive till date. In this work, rigorous analyses of several thousand crystal structures of folded proteins reveal a surprisingly simple unifying principle of backbone organization in protein folding. We find that protein folding is a direct consequence of a narrow band of stoichiometric occurrences of amino-acids in primary sequences, regardless of the size and the fold of a protein. We observe that “preferential interactions” between amino-acids do not drive protein folding, contrary to all prevalent views. We dedicate our discovery to the seminal contribution of Chargaff which was one of the major keys to elucidation of the stoichiometry-driven spatially organized double helical structure of DNA.
PLOS ONE | 2010
Neetu Kumra Taneja; Sakshi Dhingra; Aditya Mittal; Mohit Naresh; Jaya Sivaswami Tyagi
Background Tubercle bacilli are thought to persist in a dormant state during latent tuberculosis (TB) infection. Although little is known about the host factors that induce and maintain Mycobacterium tuberculosis (M. tb) within latent lesions, O2 depletion, nutrient limitation and acidification are some of the stresses implicated in bacterial dormancy development/growth arrest. Adaptation to hypoxia and exposure to NO/CO is implemented through the DevRS/DosT two-component system which induces the dormancy regulon. Methodology/Principal Findings Here we show that vitamin C (ascorbic acid/AA) can serve as an additional signal to induce the DevR regulon. Physiological levels of AA scavenge O2 and rapidly induce the DevR regulon at an estimated O2 saturation of <30%. The kinetics and magnitude of the response suggests an initial involvement of DosT and a sustained DevS-mediated response during bacterial adaptation to increasing hypoxia. In addition to inducing DevR regulon mechanisms, vitamin C induces the expression of selected genes previously shown to be responsive to low pH and oxidative stress, triggers bacterial growth arrest and promotes dormancy phenotype development in M. tb grown in axenic culture and intracellularly in THP-1 cells. Conclusions/Significance Vitamin C mimics multiple intracellular stresses and has wide-ranging regulatory effects on gene expression and physiology of M. tb which leads to growth arrest and a ‘dormant’ drug-tolerant phenotype, but in a manner independent of the DevRS/DosT sytem. The ‘AA-dormancy infection model’ offers a potential alternative to other models of non-replicating persistence of M. tb and may be useful for investigating host-‘dormant’ M. tb interactions. Our findings offer a new perspective on the role of nutritional factors in TB and suggest a possible role for vitamin C in TB.
Journal of Cell Biology | 2005
Elena Zaitseva; Aditya Mittal; Diane E. Griffin; Leonid V. Chernomordik
Viral fusion proteins of classes I and II differ radically in their initial structures but refold toward similar conformations upon activation. Do fusion pathways mediated by alphavirus E1 and influenza virus hemagglutinin (HA) that exemplify classes II and I differ to reflect the difference in their initial conformations, or concur to reflect the similarity in the final conformations? Here, we dissected the pathway of low pH–triggered E1-mediated cell–cell fusion by reducing the numbers of activated E1 proteins and by blocking different fusion stages with specific inhibitors. The discovered progression from transient hemifusion to small, and then expanding, fusion pores upon an increase in the number of activated fusion proteins parallels that established for HA-mediated fusion. We conclude that proteins as different as E1 and HA drive fusion through strikingly similar membrane intermediates, with the most energy-intensive stages following rather than preceding hemifusion. We propose that fusion reactions catalyzed by all proteins of both classes follow a similar pathway.
Cell Biology International | 2000
Joe Bentz; Aditya Mittal
It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best‐described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N‐ and C‐termini of SNAP25 (sn25), together with the Ca2+binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA‐ mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N‐termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the ‘transition state’ of the committed step of fusion. It is stabilized by a ‘dam’ of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion proteins SV5 F1 and HIV gp120/41, and for the intracellular SNARE fusion system. By comparing these domains, we have constructed a minimal set which appears to be adequate to explain how the conformational changes can produce a successful fusion event, i.e. communication of aqueous compartments.
Journal of Biological Chemistry | 2004
Eugenia Leikina; Aditya Mittal; Myoung-Soon Cho; Kamran Melikov; Michael M. Kozlov; Leonid V. Chernomordik
Current models for membrane fusion in diverse biological processes are focused on the local action of fusion proteins present in the contact zone where the proteins anchored in one membrane might interact directly with the other membrane. Are the fusion proteins outside of the contact zone just bystanders? Here we assess the role of these “outsider” proteins in influenza virus hemagglutinin-mediated fusion between red blood cells and either hemagglutinin-expressing cells or viral particles. To selectively inhibit or enhance the actions of hemagglutinin outsiders, the antibodies that bind to hemagglutinin and proteases that cleave it were conjugated to polystyrene microspheres too large to enter the contact zone. We also involved hemagglutinin outsiders into interactions with additional red blood cells. We find the hemagglutinin outsiders to be necessary and sufficient for fusion. Interfering with the activity of the hemagglutinin outsiders inhibited fusion. Selective conversion of hemagglutinin outsiders alone into fusion-competent conformation was sufficient to achieve fusion. The discovered functional role of fusion proteins located outside of the contact zone suggests a tempting analogy to mechanisms by which proteins mediate membrane fission from outside of the fission site.
Journal of Biomolecular Structure & Dynamics | 2011
Aditya Mittal; B. Jayaram
Folding of naturally occurring proteins has eluded a universal molecular level explanation till date. Rather, there is an abundance of diverse views on dominant factors governing protein folding. Through rigorous analyses of several thousand crystal structures, we observe that backbones of folded proteins display some remarkable invariant features. Folded proteins are characterized by spatially well-defined, distance dependent, and universal, neighborhoods of amino acids which defy any of the conventionally prevalent views. These findings present a compelling case for a newer view of protein folding which takes into account solvent mediated and amino acid shape and size assisted optimization of the tertiary structure of the polypeptide chain to make a functional protein.
Nucleic Acids Research | 2012
Sakshi Kohli; Yadvir Singh; Khushbu Sharma; Aditya Mittal; Nasreen Z. Ehtesham; Seyed E. Hasnain
Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading infectious disease taking one human life every 15 s globally. The two well-characterized strains H37Rv and H37Ra, derived from the same parental strain M. tuberculosis H37, show dramatically different pathogenic phenotypes. PE/PPE gene family, comprising of 176 open reading frames and present exclusively in genus Mycobacterium, accounts for ∼10% of the M. tuberculosis genome. Our comprehensive in silico analyses of PE/PPE family of H37Ra and virulent H37Rv strains revealed genetic differences between these strains in terms of several single nucleotide variations and InDels and these manifested in changes in physico-chemical properties, phosphorylation sites, and protein: protein interacting domains of the corresponding proteomes. Similar comparisons using the 13 sigma factor genes, 36 members of the mammalian cell entry family, 13 mycobacterial membrane protein large family members and 11 two-component signal transduction systems along with 5 orphaned response regulators and 2 orphaned sensor kinases failed to reveal very significant difference between H37Rv and H37Ra, reinforcing the importance of PE/PPE genes. Many of these changes between H37Rv and H37Ra can be correlated to differences in pathogenesis and virulence of the two strains.
Biophysical Journal | 2003
Aditya Mittal; Eugenia Leikina; Leonid V. Chernomordik; Joe Bentz
Membrane fusion mediated by influenza virus hemagglutinin (HA) yields different phenotypes depending on the surface density of activated HAs. A key question is whether different phenotypes arise from different fusion machines or whether different numbers of identical fusion machines yield different probabilistic outcomes. If fusion were simply a less probable event than hemifusion, requiring a larger number of identical fusion machines to occur first, then two predictions can be made. First, fusion should have a shorter average delay time than hemifusion, since there are more machines. Second, fusion should have a longer execution time of lipid mixing after it begins than hemifusion, since the full event cannot be faster than the partial event. Using a new automated video microscopy technique, we simultaneously monitored many HA-expressing cells fusing with erythrocytes and identified individual cell pairs with either full or only partial redistribution of fluorescent lipids. The full lipid mixing phenotype also showed contents mixing, i.e., fusion. Kinetic screening of the digitized fluorescence data showed that the execution of lipid mixing after the onset is faster for fusion than hemifusion. We found no correlation between the delay times before the onset of lipid mixing and the final fusion phenotype. We also found that the execution time for fusion was faster than that for hemifusion. Thus, we provide the first experimental evidence for fusion and hemifusion arising from different machines.
Journal of The Electrochemical Society | 2001
Jean-Claude Bradley; Sundar Babu; Aditya Mittal; P Ndungu; B. Carroll; Benjamin Samuel
The pulsed bipolar electrodeposition of palladium onto 1-2 μm graphite particles was investigated. The amount of palladium deposited was strongly correlated with field intensity, showing an abrupt increase at 2-3 kV/cm. The electrodeposition was successful for frequencies ranging from 500 Hz to 20 kHz, and the amount of deposited palladium was independent of the frequency used. These results demonstrate that the preparation of bipolar electrodeposited catalysts can be achieved within a very large frequency window. Palladium surface area measurements indicate an increase in dispersion with increasing frequency. Sonication of the graphite prior to deposition leads to significantly greater palladium dispersion. Electron microscopy characterization reveals three types of growth: surface-bound, ramified, and amorphous. The surface-bound growth appears as spherical deposits on the order of 5 nm in both dc and pulsed-field experiments. The ramified deposits consist of interconnected 25-50 nm diam spherical structures extending from the graphite particles and appear in the samples prepared at all studied frequencies.
Journal of Biomolecular Structure & Dynamics | 2011
Aditya Mittal; B. Jayaram
There is a universal spatial distribution for the backbones of folded pro1. teins, regardless of their size, shape and sequence. This universality appears to primarily arise out of stoichiometric (relative 2. frequencies of occurrences of amino acids) margins of life that dictate the neighborhoods of individual amino acids in folded proteins. These neighborhoods defy the conventional views on “preferential interac3. tions” stabilizing folded protein structures. The apparent “preferential interactions” that have formed the current view 4. on protein folding are post-facto inferences rather than drivers of protein folding.