Adrian P. Mancuso
European XFEL
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adrian P. Mancuso.
Applied Physics Letters | 2010
Andreas Schropp; Pit Boye; J. M. Feldkamp; Robert Hoppe; Jens Patommel; Dirk Samberg; Sandra Stephan; K. Giewekemeyer; R. N. Wilke; Tim Salditt; J. Gulden; Adrian P. Mancuso; I. A. Vartanyants; E. Weckert; Sebastian Schöder; Manfred Burghammer; C. G. Schroer
We have carried out a ptychographic scanning coherent diffraction imaging experiment on a test object in order to characterize the hard x-ray nanobeam in a scanning x-ray microscope. In addition to a high resolution image of the test object, a detailed quantitative picture of the complex wave field in the nanofocus is obtained with high spatial resolution and dynamic range. Both are the result of high statistics due to the large number of diffraction patterns. The method yields a complete description of the focus, is robust against inaccuracies in sample positioning, and requires no particular shape or prior knowledge of the test object.
Optics Express | 2004
L. D. Turner; B. B. Dhal; Jason P. Hayes; Adrian P. Mancuso; Keith A. Nugent; David Paterson; R. E. Scholten; Chanh Q. Tran; Andrew G. Peele
We discuss contrast formation in a propagating x-ray beam. We consider the validity conditions for linear relations based on the transport-of-intensity equation (TIE) and on contrast transfer functions (CTFs). From a single diffracted image, we recover the thickness of a homogeneous object which has substantial absorption and a phase-shift of --0.37 radian.
New Journal of Physics | 2010
Adrian P. Mancuso; Th. Gorniak; Florian Staier; O. Yefanov; Ruth Barth; Christof Christophis; Bernd Reime; J. Gulden; A. Singer; Michala E. Pettit; Th. Nisius; Th. Wilhein; C. Gutt; G. Grübel; N. Guerassimova; Rolf Treusch; J. Feldhaus; S. Eisebitt; E. Weckert; Michael Grunze; Axel Rosenhahn; I. A. Vartanyants
Coherent x-ray imaging represents a new window to imaging non- crystalline, biological specimens at unprecedented resolutions. The advent of free-electron lasers (FEL) allows extremely high flux densities to be delivered to a specimen resulting in stronger scattered signal from these samples to be measured. In the best case scenario, the diffraction pattern is measured before the sample is destroyed by these intense pulses, as the processes involved in radiation damage may be substantially slower than the pulse duration. In this case, the scattered signal can be interpreted and reconstructed to yield a faithful image of the sample at a resolution beyond the conventional radiation damage limit. We employ coherent x-ray diffraction imaging (CXDI) using the free-electron
Review of Scientific Instruments | 2012
W. F. Schlotter; J. J. Turner; Michael Rowen; P. A. Heimann; Michael Holmes; O. Krupin; M. Messerschmidt; Stefan Moeller; J. Krzywinski; Regina Soufli; Mónica Fernández-Perea; N. Kelez; Sooheyong Lee; Ryan Coffee; G. Hays; M. Beye; N. Gerken; F. Sorgenfrei; Stefan P. Hau-Riege; L. Juha; J. Chalupsky; V. Hajkova; Adrian P. Mancuso; A. Singer; O. Yefanov; I. A. Vartanyants; Guido Cadenazzi; Brian Abbey; Keith A. Nugent; H. Sinn
The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.
Optics Letters | 2002
Andrew G. Peele; Philip J. McMahon; David Paterson; Chanh Q. Tran; Adrian P. Mancuso; Keith A. Nugent; Jason P. Hayes; Erol C. Harvey; Barry Lai; Ian McNulty
Phase singularities are a ubiquitous feature of waves of all forms and represent a fundamental aspect of wave topology. An optical vortex phase singularity occurs when there is a spiral phase ramp about a point phase singularity. We report an experimental observation of an optical vortex in a field consisting of 9-keV x-ray photons. The vortex is created with an x-ray optical structure that imparts a spiral phase distribution to the incident wave field and is observed by use of diffraction about a wire to create a division-of-wave-front interferometer.
Optics Express | 2012
A. Singer; F. Sorgenfrei; Adrian P. Mancuso; N. Gerasimova; Oleksandr Yefanov; J. Gulden; Thomas Gorniak; Tobias Senkbeil; A. Sakdinawat; Yongmin Liu; David T. Attwood; S. Dziarzhytski; D. D. Mai; Rolf Treusch; E. Weckert; Tim Salditt; Axel Rosenhahn; W. Wurth; I. A. Vartanyants
The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10×10 μm(2) were measured. A transverse coherence length of 6.2 ± 0.9 μm in the horizontal and 8.7 ± 1.0 μm in the vertical direction was determined from the most coherent pulses. Using a split and delay unit the coherence time of the pulses produced in the same operation conditions of FLASH was measured to be 1.75 ± 0.01 fs. From our experiment we estimated the degeneracy parameter of the FLASH beam to be on the order of 10(10) to 10(11), which exceeds the values of this parameter at any other source in the same energy range by many orders of magnitude.
Optics Express | 2011
Thomas Gorniak; R. Heine; Adrian P. Mancuso; Florian Staier; Christof Christophis; Michala E. Pettitt; A. Sakdinawat; Rolf Treusch; N. Guerassimova; J. Feldhaus; C. Gutt; G. Grübel; S. Eisebitt; André Beyer; Armin Gölzhäuser; E. Weckert; Michael Grunze; I. A. Vartanyants; Axel Rosenhahn
The imaging of hydrated biological samples - especially in the energy window of 284-540 eV, where water does not obscure the signal of soft organic matter and biologically relevant elements - is of tremendous interest for life sciences. Free-electron lasers can provide highly intense and coherent pulses, which allow single pulse imaging to overcome resolution limits set by radiation damage. One current challenge is to match both the desired energy and the intensity of the light source. We present the first images of dehydrated biological material acquired with 3rd harmonic radiation from FLASH by digital in-line zone plate holography as one step towards the vision of imaging hydrated biological material with photons in the water window. We also demonstrate the first application of ultrathin molecular sheets as suitable substrates for future free-electron laser experiments with biological samples in the form of a rat fibroblast cell and marine biofouling bacteria Cobetia marina.
Scientific Data | 2016
Anna Munke; Jakob Andreasson; Andrew Aquila; Salah Awel; Kartik Ayyer; Anton Barty; Richard Bean; Peter Berntsen; Johan Bielecki; Sébastien Boutet; Maximilian Bucher; Henry N. Chapman; Benedikt J. Daurer; Hasan Demirci; Veit Elser; Petra Fromme; Janos Hajdu; Max F. Hantke; Akifumi Higashiura; Brenda G. Hogue; Ahmad Hosseinizadeh; Yoonhee Kim; Richard A. Kirian; Hemanth K. N. Reddy; Ti Yen Lan; Daniel S. D. Larsson; Haiguang Liu; N. Duane Loh; Filipe R. N. C. Maia; Adrian P. Mancuso
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
Review of Scientific Instruments | 2004
Benedicta D. Arhatari; Adrian P. Mancuso; Andrew G. Peele; Keith A. Nugent
We consider image formation for the phase-contrast radiography technique where the radiation source is extended and spatially incoherent. A model is developed for this imaging process which allows us to define an objective filtering criterion that can be applied to the recovery of quantitative phase images from data obtained at different propagation distances. We test our image model with experimental x-ray data. We then apply our filter to experimental neutron phase radiography data and demonstrate improved image quality.
Optics Express | 2009
Axel Rosenhahn; Florian Staier; Thomas Nisius; David Schäfer; Ruth Barth; Christof Christophis; Lorenz-M. Stadler; S. Streit-Nierobisch; C. Gutt; Adrian P. Mancuso; Andreas Schropp; Johannes Gulden; Bernd Reime; J. Feldhaus; Edgar Weckert; Bastian Pfau; Christian M. Günther; René Könnecke; S. Eisebitt; M. Martins; Bart Faatz; Natalia Guerassimova; Katja Honkavaara; Rolf Treusch; E.L. Saldin; Siegfried Schreiber; E.A. Schneidmiller; M.V. Yurkov; I. A. Vartanyants; G. Grübel
Femtosecond vacuum ultraviolet (VUV) radiation provided by the free-electron laser FLASH was used for digital in-line holographic microscopy and applied to image particles, diatoms and critical point dried fibroblast cells. To realize the classical in-line Gabor geometry, a 1 microm pinhole was used as spatial filter to generate a divergent light cone with excellent pointing stability. At a fundamental wavelength of 8 nm test objects such as particles and diatoms were imaged at a spatial resolution of 620 nm. In order to demonstrate the applicability to biologically relevant systems, critical point dried rat embryonic fibroblast cells were for the first time imaged with free-electron laser radiation.