Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrián Ponce-Alvarez is active.

Publication


Featured researches published by Adrián Ponce-Alvarez.


The Journal of Neuroscience | 2014

How Local Excitation–Inhibition Ratio Impacts the Whole Brain Dynamics

Gustavo Deco; Adrián Ponce-Alvarez; Patric Hagmann; Gian Luca Romani; Dante Mantini; M. Corbetta

The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the models prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation–inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.


PLOS Computational Biology | 2015

Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity

Adrián Ponce-Alvarez; Gustavo Deco; Patric Hagmann; Gian Luca Romani; Dante Mantini; M. Corbetta

Spatial patterns of coherent activity across different brain areas have been identified during the resting-state fluctuations of the brain. However, recent studies indicate that resting-state activity is not stationary, but shows complex temporal dynamics. We were interested in the spatiotemporal dynamics of the phase interactions among resting-state fMRI BOLD signals from human subjects. We found that the global phase synchrony of the BOLD signals evolves on a characteristic ultra-slow (<0.01Hz) time scale, and that its temporal variations reflect the transient formation and dissolution of multiple communities of synchronized brain regions. Synchronized communities reoccurred intermittently in time and across scanning sessions. We found that the synchronization communities relate to previously defined functional networks known to be engaged in sensory-motor or cognitive function, called resting-state networks (RSNs), including the default mode network, the somato-motor network, the visual network, the auditory network, the cognitive control networks, the self-referential network, and combinations of these and other RSNs. We studied the mechanism originating the observed spatiotemporal synchronization dynamics by using a network model of phase oscillators connected through the brain’s anatomical connectivity estimated using diffusion imaging human data. The model consistently approximates the temporal and spatial synchronization patterns of the empirical data, and reveals that multiple clusters that transiently synchronize and desynchronize emerge from the complex topology of anatomical connections, provided that oscillators are heterogeneous.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Stimulus-dependent variability and noise correlations in cortical MT neurons

Adrián Ponce-Alvarez; Alexander Thiele; Thomas D. Albright; Gene R. Stoner; Gustavo Deco

Population codes assume that neural systems represent sensory inputs through the firing rates of populations of differently tuned neurons. However, trial-by-trial variability and noise correlations are known to affect the information capacity of neural codes. Although recent studies have shown that stimulus presentation reduces both variability and rate correlations with respect to their spontaneous level, possibly improving the encoding accuracy, whether these second order statistics are tuned is unknown. If so, second-order statistics could themselves carry information, rather than being invariably detrimental. Here we show that rate variability and noise correlation vary systematically with stimulus direction in directionally selective middle temporal (MT) neurons, leading to characteristic tuning curves. We show that such tuning emerges in a stochastic recurrent network, for a set of connectivity parameters that overlaps with a single-state scenario and multistability. Information theoretic analysis shows that second-order statistics carry information that can improve the accuracy of the population code.


The Journal of Neuroscience | 2009

Long-Term Modifications in Motor Cortical Dynamics Induced by Intensive Practice

Bjørg Elisabeth Kilavik; Sébastien Roux; Adrián Ponce-Alvarez; Joachim Confais; Sonja Grün; Alexa Riehle

The planning of goal-directed movements requires sensory, temporal, and contextual information to be combined. Sensorimotor functions are embedded in large neuronal networks, but it is unclear how networks organize their activity in space and time to optimize behavior. Temporal coordination of activity in many neurons within a network, e.g., spike synchrony, might be complementary to a firing rate code, allowing efficient computation with overall less population activity. Here we asked the question whether intensive practice induces long-term modifications in the temporal structure of synchrony and firing rate at the population level. Three monkeys were trained in a delayed pointing task in which the selection of movement direction depended on correct time estimation. The synchronous firing among pairs of simultaneously recorded neurons in motor cortex was analyzed using the “unitary event” technique. The evolution of synchrony in both time, within the trial, and temporal precision was then quantified at the level of an entire population of neurons by using two different quantification techniques and compared with the population firing rate. We find that the task timing was represented in the temporal structure of significant spike synchronization at the population level. During practice, the temporal structure of synchrony was shaped, with synchrony becoming stronger and more localized in time during late experimental sessions, in parallel with an improvement in behavioral performance. Concurrently, the average population firing rate mainly decreased. Performance optimization through practice might therefore be achieved by boosting the computational contribution of spike synchrony, allowing an overall reduction in population activity.


PLOS Computational Biology | 2016

Estimation of directed effective connectivity from fMRI functional connectivity hints at asymmetries of cortical connectome

Matthieu Gilson; Rubén Moreno-Bote; Adrián Ponce-Alvarez; Petra Ritter; Gustavo Deco

The brain exhibits complex spatio-temporal patterns of activity. This phenomenon is governed by an interplay between the internal neural dynamics of cortical areas and their connectivity. Uncovering this complex relationship has raised much interest, both for theory and the interpretation of experimental data (e.g., fMRI recordings) using dynamical models. Here we focus on the so-called inverse problem: the inference of network parameters in a cortical model to reproduce empirically observed activity. Although it has received a lot of interest, recovering directed connectivity for large networks has been rather unsuccessful so far. The present study specifically addresses this point for a noise-diffusion network model. We develop a Lyapunov optimization that iteratively tunes the network connectivity in order to reproduce second-order moments of the node activity, or functional connectivity. We show theoretically and numerically that the use of covariances with both zero and non-zero time shifts is the key to infer directed connectivity. The first main theoretical finding is that an accurate estimation of the underlying network connectivity requires that the time shift for covariances is matched with the time constant of the dynamical system. In addition to the network connectivity, we also adjust the intrinsic noise received by each network node. The framework is applied to experimental fMRI data recorded for subjects at rest. Diffusion-weighted MRI data provide an estimate of anatomical connections, which is incorporated to constrain the cortical model. The empirical covariance structure is reproduced faithfully, especially its temporal component (i.e., time-shifted covariances) in addition to the spatial component that is usually the focus of studies. We find that the cortical interactions, referred to as effective connectivity, in the tuned model are not reciprocal. In particular, hubs are either receptors or feeders: they do not exhibit both strong incoming and outgoing connections. Our results sets a quantitative ground to explore the propagation of activity in the cortex.


PLOS Computational Biology | 2015

Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

Adrián Ponce-Alvarez; Biyu J. He; Patric Hagmann; Gustavo Deco

How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.


The Journal of Neuroscience | 2012

On the anticipatory precue activity in motor cortex.

Joachim Confais; Bjørg Elisabeth Kilavik; Adrián Ponce-Alvarez; Alexa Riehle

Motor cortical neurons are activated during movement preparation and execution, and in response to task-relevant visual cues. A few studies also report activation before the expected presentation of cues. Here, we study specifically this anticipatory activity preceding visual cues in motor cortical areas. We recorded the activity of 1215 neurons in the motor cortex of two macaque monkeys while they performed a center-out reaching task, including two consecutive delays of equal duration, known in advance. During the first delay (D1), they had to await the spatial cue and only reach to the cued target after the second delay (D2). Forty-two percent of the neurons displayed anticipatory activity during D1. Among these anticipatory neurons, 59% increased (D1up) their activity and the remaining decreased (D1down) their activity. By classifying the neurons according to these firing rate profiles during D1, we found that the activity during D2 differed in a systematic way. The D1up neurons were more likely to discharge phasically soon after the spatial cue and were less active during movement execution, whereas the D1down neurons showed the opposite pattern. But, regardless of their temporal activity profiles, the two categories seemed equally involved in early and late motor preparation, as reflected in their directional selectivity. This precue activity in motor cortex may reflect two complementary, coexisting processes: the facilitation of incoming spatial information in parallel with the downregulation of corticospinal excitability to prevent a premature response.


Journal of Neurophysiology | 2010

Evoked potentials in motor cortical local field potentials reflect task timing and behavioral performance.

Bjørg Elisabeth Kilavik; Joachim Confais; Adrián Ponce-Alvarez; Markus Diesmann; Alexa Riehle

Evoked potentials (EPs) are observed in motor cortical local field potentials (LFPs) during movement execution (movement-related potentials [MRPs]) and in response to relevant visual cues (visual evoked potentials [VEPs]). Motor cortical EPs may be directionally selective, but little is known concerning their relation to other aspects of motor behavior, such as task timing and performance. We recorded LFPs in motor cortex of two monkeys during performance of a precued arm-reaching task. A time cue at the start of each trial signaled delay duration and thereby the pace of the task and the available time for movement preparation. VEPs and MRPs were strongly modulated by the delay duration, VEPs being systematically larger in short-delay trials and MRPs larger in long-delay trials. Despite these systematic modulations related to the task timing, directional selectivity was similar in short and long trials. The behavioral reaction time was positively correlated with MRP size and negatively correlated with VEP size, within sessions. In addition, the behavioral performance improved across sessions, in parallel with a slow decrease in the size of VEPs and MRPs. Our results clearly show the strong influence of the behavioral context and performance on motor cortical population activity during movement preparation and execution.


PLOS Computational Biology | 2017

Spontaneous cortical activity is transiently poised close to criticality

Gerald Hahn; Adrián Ponce-Alvarez; Cyril Monier; Giacomo Benvenuti; Arvind Kumar; Frédéric Chavane; Gustavo Deco; Yves Frégnac

Brain activity displays a large repertoire of dynamics across the sleep-wake cycle and even during anesthesia. It was suggested that criticality could serve as a unifying principle underlying the diversity of dynamics. This view has been supported by the observation of spontaneous bursts of cortical activity with scale-invariant sizes and durations, known as neuronal avalanches, in recordings of mesoscopic cortical signals. However, the existence of neuronal avalanches in spiking activity has been equivocal with studies reporting both its presence and absence. Here, we show that signs of criticality in spiking activity can change between synchronized and desynchronized cortical states. We analyzed the spontaneous activity in the primary visual cortex of the anesthetized cat and the awake monkey, and found that neuronal avalanches and thermodynamic indicators of criticality strongly depend on collective synchrony among neurons, LFP fluctuations, and behavioral state. We found that synchronized states are associated to criticality, large dynamical repertoire and prolonged epochs of eye closure, while desynchronized states are associated to sub-criticality, reduced dynamical repertoire, and eyes open conditions. Our results show that criticality in cortical dynamics is not stationary, but fluctuates during anesthesia and between different vigilance states.


Scientific Reports | 2017

Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling

Beatrice M. Jobst; Rikkert Hindriks; Helmut Laufs; Enzo Tagliazucchi; Gerald Hahn; Adrián Ponce-Alvarez; Angus B. A. Stevner; Morten L. Kringelbach; Gustavo Deco

Recent research has found that the human sleep cycle is characterised by changes in spatiotemporal patterns of brain activity. Yet, we are still missing a mechanistic explanation of the local neuronal dynamics underlying these changes. We used whole-brain computational modelling to study the differences in global brain functional connectivity and synchrony of fMRI activity in healthy humans during wakefulness and slow-wave sleep. We applied a whole-brain model based on the normal form of a supercritical Hopf bifurcation and studied the dynamical changes when adapting the bifurcation parameter for all brain nodes to best match wakefulness and slow-wave sleep. Furthermore, we analysed differences in effective connectivity between the two states. In addition to significant changes in functional connectivity, synchrony and metastability, this analysis revealed a significant shift of the global dynamic working point of brain dynamics, from the edge of the transition between damped to sustained oscillations during wakefulness, to a stable focus during slow-wave sleep. Moreover, we identified a significant global decrease in effective interactions during slow-wave sleep. These results suggest a mechanism for the empirical functional changes observed during slow-wave sleep, namely a global shift of the brain’s dynamic working point leading to increased stability and decreased effective connectivity.

Collaboration


Dive into the Adrián Ponce-Alvarez's collaboration.

Top Co-Authors

Avatar

Gustavo Deco

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dante Mantini

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Gian Luca Romani

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexa Riehle

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

M. Corbetta

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge