Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthieu Gilson is active.

Publication


Featured researches published by Matthieu Gilson.


Frontiers in Neural Circuits | 2013

Inhibitory synaptic plasticity: spike timing-dependence and putative network function

Tim P. Vogels; Robert C. Froemke; Nicolas Doyon; Matthieu Gilson; Julie S. Haas; Robert C. Liu; Arianna Maffei; Paul Miller; Corette J. Wierenga; Melanie A. Woodin; Friedemann Zenke; Henning Sprekeler

While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical findings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.


PLOS ONE | 2011

Stability versus Neuronal Specialization for STDP: Long- Tail Weight Distributions Solve the Dilemma

Matthieu Gilson; Tomoki Fukai

Spike-timing-dependent plasticity (STDP) modifies the weight (or strength) of synaptic connections between neurons and is considered to be crucial for generating network structure. It has been observed in physiology that, in addition to spike timing, the weight update also depends on the current value of the weight. The functional implications of this feature are still largely unclear. Additive STDP gives rise to strong competition among synapses, but due to the absence of weight dependence, it requires hard boundaries to secure the stability of weight dynamics. Multiplicative STDP with linear weight dependence for depression ensures stability, but it lacks sufficiently strong competition required to obtain a clear synaptic specialization. A solution to this stability-versus-function dilemma can be found with an intermediate parametrization between additive and multiplicative STDP. Here we propose a novel solution to the dilemma, named log-STDP, whose key feature is a sublinear weight dependence for depression. Due to its specific weight dependence, this new model can produce significantly broad weight distributions with no hard upper bound, similar to those recently observed in experiments. Log-STDP induces graded competition between synapses, such that synapses receiving stronger input correlations are pushed further in the tail of (very) large weights. Strong weights are functionally important to enhance the neuronal response to synchronous spike volleys. Depending on the input configuration, multiple groups of correlated synaptic inputs exhibit either winner-share-all or winner-take-all behavior. When the configuration of input correlations changes, individual synapses quickly and robustly readapt to represent the new configuration. We also demonstrate the advantages of log-STDP for generating a stable structure of strong weights in a recurrently connected network. These properties of log-STDP are compared with those of previous models. Through long-tail weight distributions, log-STDP achieves both stable dynamics for and robust competition of synapses, which are crucial for spike-based information processing.


Biological Cybernetics | 2009

Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity–strengthening correlated input pathways

Matthieu Gilson; Anthony N. Burkitt; David B. Grayden; Doreen A. Thomas; J. Leo van Hemmen

Spike-timing-dependent plasticity (STDP) determines the evolution of the synaptic weights according to their pre- and post-synaptic activity, which in turn changes the neuronal activity. In this paper, we extend previous studies of input selectivity induced by (STDP) for single neurons to the biologically interesting case of a neuronal network with fixed recurrent connections and plastic connections from external pools of input neurons. We use a theoretical framework based on the Poisson neuron model to analytically describe the network dynamics (firing rates and spike-time correlations) and thus the evolution of the synaptic weights. This framework incorporates the time course of the post-synaptic potentials and synaptic delays. Our analysis focuses on the asymptotic states of a network stimulated by two homogeneous pools of “steady” inputs, namely Poisson spike trains which have fixed firing rates and spike-time correlations. The (STDP) model extends rate-based learning in that it can implement, at the same time, both a stabilization of the individual neuron firing rates and a slower weight specialization depending on the input spike-time correlations. When one input pathway has stronger within-pool correlations, the resulting synaptic dynamics induced by (STDP) are shown to be similar to those arising in the case of a purely feed-forward network: the weights from the more correlated inputs are potentiated at the expense of the remaining input connections.


Biological Cybernetics | 2009

Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: Structuring synaptic pathways among recurrent connections

Matthieu Gilson; Anthony N. Burkitt; David B. Grayden; Doreen A. Thomas; J. Leo van Hemmen

In neuronal networks, the changes of synaptic strength (or weight) performed by spike-timing-dependent plasticity (STDP) are hypothesized to give rise to functional network structure. This article investigates how this phenomenon occurs for the excitatory recurrent connections of a network with fixed input weights that is stimulated by external spike trains. We develop a theoretical framework based on the Poisson neuron model to analyze the interplay between the neuronal activity (firing rates and the spike-time correlations) and the learning dynamics, when the network is stimulated by correlated pools of homogeneous Poisson spike trains. STDP can lead to both a stabilization of all the neuron firing rates (homeostatic equilibrium) and a robust weight specialization. The pattern of specialization for the recurrent weights is determined by a relationship between the input firing-rate and correlation structures, the network topology, the STDP parameters and the synaptic response properties. We find conditions for feed-forward pathways or areas with strengthened self-feedback to emerge in an initially homogeneous recurrent network.


Frontiers in Computational Neuroscience | 2010

STDP in Recurrent Neuronal Networks

Matthieu Gilson; Anthony N. Burkitt; J. Leo van Hemmen

Recent results about spike-timing-dependent plasticity (STDP) in recurrently connected neurons are reviewed, with a focus on the relationship between the weight dynamics and the emergence of network structure. In particular, the evolution of synaptic weights in the two cases of incoming connections for a single neuron and recurrent connections are compared and contrasted. A theoretical framework is used that is based upon Poisson neurons with a temporally inhomogeneous firing rate and the asymptotic distribution of weights generated by the learning dynamics. Different network configurations examined in recent studies are discussed and an overview of the current understanding of STDP in recurrently connected neuronal networks is presented.


Biological Cybernetics | 2007

Spike-timing-dependent plasticity for neurons with recurrent connections

Anthony N. Burkitt; Matthieu Gilson; J. L. van Hemmen

The dynamics of the learning equation, which describes the evolution of the synaptic weights, is derived in the situation where the network contains recurrent connections. The derivation is carried out for the Poisson neuron model. The spiking-rates of the recurrently connected neurons and their cross-correlations are determined self- consistently as a function of the external synaptic inputs. The solution of the learning equation is illustrated by the analysis of the particular case in which there is no external synaptic input. The general learning equation and the fixed-point structure of its solutions is discussed.


Biological Cybernetics | 2009

Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity—symmetry breaking

Matthieu Gilson; Anthony N. Burkitt; David B. Grayden; Doreen A. Thomas; J. Leo van Hemmen

Spike-timing-dependent plasticity (STDP) is believed to structure neuronal networks by slowly changing the strengths (or weights) of the synaptic connections between neurons depending upon their spiking activity, which in turn modifies the neuronal firing dynamics. In this paper, we investigate the change in synaptic weights induced by STDP in a recurrently connected network in which the input weights are plastic but the recurrent weights are fixed. The inputs are divided into two pools with identical constant firing rates and equal within-pool spike-time correlations, but with no between-pool correlations. Our analysis uses the Poisson neuron model in order to predict the evolution of the input synaptic weights and focuses on the asymptotic weight distribution that emerges due to STDP. The learning dynamics induces a symmetry breaking for the individual neurons, namely for sufficiently strong within-pool spike-time correlation each neuron specializes to one of the input pools. We show that the presence of fixed excitatory recurrent connections between neurons induces a group symmetry-breaking effect, in which neurons tend to specialize to the same input pool. Consequently STDP generates a functional structure on the input connections of the network.


PLOS Computational Biology | 2016

Estimation of directed effective connectivity from fMRI functional connectivity hints at asymmetries of cortical connectome

Matthieu Gilson; Rubén Moreno-Bote; Adrián Ponce-Alvarez; Petra Ritter; Gustavo Deco

The brain exhibits complex spatio-temporal patterns of activity. This phenomenon is governed by an interplay between the internal neural dynamics of cortical areas and their connectivity. Uncovering this complex relationship has raised much interest, both for theory and the interpretation of experimental data (e.g., fMRI recordings) using dynamical models. Here we focus on the so-called inverse problem: the inference of network parameters in a cortical model to reproduce empirically observed activity. Although it has received a lot of interest, recovering directed connectivity for large networks has been rather unsuccessful so far. The present study specifically addresses this point for a noise-diffusion network model. We develop a Lyapunov optimization that iteratively tunes the network connectivity in order to reproduce second-order moments of the node activity, or functional connectivity. We show theoretically and numerically that the use of covariances with both zero and non-zero time shifts is the key to infer directed connectivity. The first main theoretical finding is that an accurate estimation of the underlying network connectivity requires that the time shift for covariances is matched with the time constant of the dynamical system. In addition to the network connectivity, we also adjust the intrinsic noise received by each network node. The framework is applied to experimental fMRI data recorded for subjects at rest. Diffusion-weighted MRI data provide an estimate of anatomical connections, which is incorporated to constrain the cortical model. The empirical covariance structure is reproduced faithfully, especially its temporal component (i.e., time-shifted covariances) in addition to the spatial component that is usually the focus of studies. We find that the cortical interactions, referred to as effective connectivity, in the tuned model are not reciprocal. In particular, hubs are either receptors or feeders: they do not exhibit both strong incoming and outgoing connections. Our results sets a quantitative ground to explore the propagation of activity in the cortex.


Biological Cybernetics | 2009

Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity

Matthieu Gilson; Anthony N. Burkitt; David B. Grayden; Doreen A. Thomas; J. Leo van Hemmen

In contrast to a feed-forward architecture, the weight dynamics induced by spike-timing-dependent plasticity (STDP) in a recurrent neuronal network is not yet well understood. In this article, we extend a previous study of the impact of additive STDP in a recurrent network that is driven by spontaneous activity (no external stimulating inputs) from a fully connected network to one that is only partially connected. The asymptotic state of the network is analyzed, and it is found that the equilibrium and stability conditions for the firing rates are similar for both full and partial connectivity: STDP causes the firing rates to converge toward the same value and remain quasi-homogeneous. However, when STDP induces strong weight competition, the connectivity affects the weight dynamics in that the distribution of the weights disperses more quickly for lower density than for higher density. The asymptotic weight distribution strongly depends upon that at the beginning of the learning epoch; consequently, homogeneous connectivity alone is not sufficient to obtain homogeneous neuronal activity. In the absence of external inputs, STDP can nevertheless generate structure in the network through autocorrelation effects, for example, by introducing asymmetry in network topology.


Biological Cybernetics | 2010

Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence

Matthieu Gilson; Anthony N. Burkitt; David B. Grayden; Doreen A. Thomas; J. Leo van Hemmen

Spike-timing-dependent plasticity (STDP) determines the evolution of the synaptic weights according to their pre- and post-synaptic activity, which in turn changes the neuronal activity on a (much) slower time scale. This paper examines the effect of STDP in a recurrently connected network stimulated by external pools of input spike trains, where both input and recurrent synapses are plastic. Our previously developed theoretical framework is extended to incorporate weight-dependent STDP and dendritic delays. The weight dynamics is determined by an interplay between the neuronal activation mechanisms, the input spike-time correlations, and the learning parameters. For the case of two external input pools, the resulting learning scheme can exhibit a symmetry breaking of the input connections such that two neuronal groups emerge, each specialized to one input pool only. In addition, we show how the recurrent connections within each neuronal group can be strengthened by STDP at the expense of those between the two groups. This neuronal self-organization can be seen as a basic dynamical ingredient for the emergence of neuronal maps induced by activity-dependent plasticity.

Collaboration


Dive into the Matthieu Gilson's collaboration.

Top Co-Authors

Avatar

Gustavo Deco

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoki Fukai

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Dante Mantini

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge