Adrian Ranga
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adrian Ranga.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Mikaël M. Martino; Priscilla S. Briquez; Adrian Ranga; Matthias P. Lutolf; Jeffrey A. Hubbell
By binding growth factors (GFs), the ECM tightly regulates their activity. We recently reported that the heparin-binding domain II of fibronectin acts as a promiscuous high-affinity GF-binding domain. Here we hypothesized that fibrin, the provisional ECM during tissue repair, also could be highly promiscuous in its GF-binding capacity. Using multiple affinity-based assays, we found that fibrin(ogen) and its heparin-binding domain bind several GFs from the PDGF/VEGF and FGF families and some GFs from the TGF-β and neurotrophin families. Overall, we identified 15 unique binding interactions. The GF binding ability of fibrinogen caused prolonged retention of many of the identified GFs within fibrin. Thus, based on the promiscuous and high-affinity interactions in fibrin, GF binding may be one of fibrin’s main physiological functions, and these interactions may potentially play an important and ubiquitous role during tissue repair. To prove this role in a gain-of-function model, we incorporated the heparin-binding domain of fibrin into a synthetic fibrin-mimetic matrix. In vivo, the multifunctional synthetic matrix could fully mimic the effect of fibrin in a diabetic mouse model of impaired wound healing, demonstrating the benefits of generating a hybrid biomaterial consisting of a synthetic polymeric scaffold and recombinant bioactive ECM domains. The reproduction of GF–ECM interactions with a fibrin-mimetic matrix could be clinically useful, and has the significant benefit of a more straightforward regulatory path associated with chemical synthesis rather than human sourcing.
Biophysical Journal | 2011
Martin Ehrbar; Ana Sala; Philipp S. Lienemann; Adrian Ranga; Katarzyna Mosiewicz; A Bittermann; Simone C. Rizzi; Franz E. Weber; Matthias P. Lutolf
Reductionist in vitro model systems which mimic specific extracellular matrix functions in a highly controlled manner, termed artificial extracellular matrices (aECM), have increasingly been used to elucidate the role of cell-ECM interactions in regulating cell fate. To better understand the interplay of biophysical and biochemical effectors in controlling three-dimensional cell migration, a poly(ethylene glycol)-based aECM platform was used in this study to explore the influence of matrix cross-linking density, represented here by stiffness, on cell migration in vitro and in vivo. In vitro, the migration behavior of single preosteoblastic cells within hydrogels of varying stiffness and susceptibilities to degradation by matrix metalloproteases was assessed by time-lapse microscopy. Migration behavior was seen to be strongly dependent on matrix stiffness, with two regimes identified: a nonproteolytic migration mode dominating at relatively low matrix stiffness and proteolytic migration at higher stiffness. Subsequent in vivo experiments revealed a similar stiffness dependence of matrix remodeling, albeit less sensitive to the matrix metalloprotease sensitivity. Therefore, our aECM model system is well suited to unveil the role of biophysical and biochemical determinants of physiologically relevant cell migration phenomena.
Nature Communications | 2014
Adrian Ranga; Samy Gobaa; Yuya Okawa; Kasia Mosiewicz; Andrea Negro; Matthias P. Lutolf
The behaviour of mammalian cells in a tissue is governed by the three-dimensional (3D) microenvironment and involves a dynamic interplay between biochemical and mechanical signals provided by the extracellular matrix (ECM), cell–cell interactions and soluble factors. The complexity of the microenvironment and the context-dependent cell responses that arise from these interactions have posed a major challenge to understanding the underlying regulatory mechanisms. Here we develop an experimental paradigm to dissect the role of various interacting factors by simultaneously synthesizing more than 1,000 unique microenvironments with robotic nanolitre liquid-dispensing technology and by probing their effects on cell fate. Using this novel 3D microarray platform, we assess the combined effects of matrix elasticity, proteolytic degradability and three distinct classes of signalling proteins on mouse embryonic stem cells, unveiling a comprehensive map of interactions involved in regulating self-renewal. This approach is broadly applicable to gain a systems-level understanding of multifactorial 3D cell–matrix interactions.
Nature Materials | 2016
Massimiliano Caiazzo; Yuya Okawa; Adrian Ranga; Alessandra Piersigilli; Yoji Tabata; Matthias P. Lutolf
Since the discovery of induced pluripotent stem cells (iPSCs), numerous approaches have been explored to improve the original protocol, which is based on a two-dimensional (2D) cell-culture system. Surprisingly, nothing is known about the effect of a more biologically faithful 3D environment on somatic-cell reprogramming. Here, we report a systematic analysis of how reprogramming of somatic cells occurs within engineered 3D extracellular matrices. By modulating microenvironmental stiffness, degradability and biochemical composition, we have identified a previously unknown role for biophysical effectors in the promotion of iPSC generation. We find that the physical cell confinement imposed by the 3D microenvironment boosts reprogramming through an accelerated mesenchymal-to-epithelial transition and increased epigenetic remodelling. We conclude that 3D microenvironmental signals act synergistically with reprogramming transcription factors to increase somatic plasticity.
Advanced Drug Delivery Reviews | 2014
Adrian Ranga; Nikolche Gjorevski; Matthias P. Lutolf
The development of new drugs is currently a long and costly process in large part due to the failure of promising drug candidates identified in initial in vitro screens to perform as intended in vivo. New approaches to drug screening are being developed which focus on providing more biomimetic platforms. This review surveys this new generation of drug screening technologies, and provides an overview of recent developments in organoid culture systems which could afford previously unmatched fidelity for testing bioactivity and toxicity. The challenges inherent in such approaches will also be discussed, with a view towards bridging the gap between proof-of-concept studies and a wider implementation within the drug development community.
Development | 2013
Chiara Greggio; Filippo De Franceschi; Manuel Figueiredo-Larsen; Samy Gobaa; Adrian Ranga; Henrik Semb; Matthias P. Lutolf; Anne Grapin-Botton
In the context of a cellular therapy for diabetes, methods for pancreatic progenitor expansion and subsequent differentiation into insulin-producing beta cells would be extremely valuable. Here we establish three-dimensional culture conditions in Matrigel that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the medium composition we generate either hollow spheres, which are mainly composed of pancreatic progenitors, or complex organoids that spontaneously undergo pancreatic morphogenesis and differentiation. The in vitro maintenance and expansion of pancreatic progenitors require active Notch and FGF signaling, thus recapitulating in vivo niche signaling interactions. Our experiments reveal new aspects of pancreas development, such as a community effect by which small groups of cells better maintain progenitor properties and expand more efficiently than isolated cells, as well as the requirement for three-dimensionality. Finally, growth conditions in chemically defined biomaterials pave the way for testing the biophysical and biochemical properties of the niche that sustains pancreatic progenitors.
Development | 2014
Nikolche Gjorevski; Adrian Ranga; Matthias P. Lutolf
During organogenesis, various molecular and physical signals are orchestrated in space and time to sculpt multiple cell types into functional tissues and organs. The complex and dynamic nature of the process has hindered studies aimed at delineating morphogenetic mechanisms in vivo, particularly in mammals. Recent demonstrations of stem cell-driven tissue assembly in culture offer a powerful new tool for modeling and dissecting organogenesis. However, despite the highly organotypic nature of stem cell-derived tissues, substantial differences set them apart from their in vivo counterparts, probably owing to the altered microenvironment in which they reside and the lack of mesenchymal influences. Advances in the biomaterials and microtechnology fields have, for example, afforded a high degree of spatiotemporal control over the cellular microenvironment, making it possible to interrogate the effects of individual microenvironmental components in a modular fashion and rapidly identify organ-specific synthetic culture models. Hence, bioengineering approaches promise to bridge the gap between stem cell-driven tissue formation in culture and morphogenesis in vivo, offering mechanistic insight into organogenesis and unveiling powerful new models for drug discovery, as well as strategies for tissue regeneration in the clinic. We draw on several examples of stem cell-derived organoids to illustrate how bioengineering can contribute to tissue formation ex vivo. We also discuss the challenges that lie ahead and potential ways to overcome them.
Stem cell reports | 2014
Andrea Meinhardt; Dominic Eberle; Akira Tazaki; Adrian Ranga; Marco Niesche; Michaela Wilsch-Bräuninger; Agnieszka Stec; Gabriele Schackert; Matthias P. Lutolf; Elly M. Tanaka
Summary Inducing organogenesis in 3D culture is an important aspect of stem cell research. Anterior neural structures have been produced from large embryonic stem cell (ESC) aggregates, but the steps involved in patterning such complex structures have been ill defined, as embryoid bodies typically contained many cell types. Here we show that single mouse ESCs directly embedded in Matrigel or defined synthetic matrices under neural induction conditions can clonally form neuroepithelial cysts containing a single lumen in 3D. Untreated cysts were uniformly dorsal and could be ventralized to floor plate (FP). Retinoic acid posteriorized cysts to cervical levels and induced localize FP formation yielding full patterning along the dorsal/ventral (DV) axis. Correct spatial organization of motor neurons, interneurons, and dorsal interneurons along the DV axis was observed. This system serves as a valuable tool for studying morphogen action in 3D and as a source of patterned spinal cord tissue.
Integrative Biology | 2011
Ana Sala; Patrick Hänseler; Adrian Ranga; Matthias P. Lutolf; Janos Vörös; Martin Ehrbar; Franz E. Weber
Engineered artificial microenvironments hold enormous potential as models to study developmental, physiological, pathological, and regenerative processes under highly defined conditions. Such platforms aim at bridging the gap between traditional in vitro 2D culture systems and animal models. By dissecting the biological complexity into an amenable number of parameters, systemic manipulation and study in controllable environments closely resembling the in vivo situation is possible. Novel strategies that address the evaluation of either ECM components, growth factors or cell-cell interactions on cellular behaviour are being developed. However, reliable methods that simultaneously recapitulate the natural instructive microenvironments in terms of cell and matrix composition, biological cues, heterogeneity and geometry are not yet available. Such spatially-defined microenvironments may be necessary to initiate and guide the formation of artificial tissues by morphogenetic processes. In this work, we introduce a flexible strategy that relies on the combination of artificial extracellular matrices with patterning techniques as well as a layer-by-layer approach to mimic rationally-designed instructive milieus. By a rational arrangement of cells and defined biochemical and biophysical extracellular cues, we report control of cell migration and generation of an artificial vascularized bone tissue-like construct.
Current Opinion in Cell Biology | 2012
Adrian Ranga; Matthias P. Lutolf
The complexity of stem cell niches poses a tremendous challenge to understanding mechanisms of extrinsic regulation of stem cell fate. In order to better understand niche signaling and its effect on stem cell fate choices, in vitro systems are being engineered which recapitulate, in a simplistic but increasingly sophisticated manner, native stem cell niches. New technologies or new combinations of existing technologies allow more systematic ways to probe niche signaling in high-throughput. Systems biology approaches in experimental design, data acquisition and analysis will be necessary to tackle the challenges that lie ahead.