Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian V. Fuchs is active.

Publication


Featured researches published by Adrian V. Fuchs.


Polymer Chemistry | 2014

Development of a polymer theranostic for prostate cancer

Amanda K. Pearce; Barbara E. Rolfe; Pamela J. Russell; Brian Wan-Chi Tse; Andrew K. Whittaker; Adrian V. Fuchs; Kristofer J. Thurecht

Theranostics offers an improved treatment strategy for prostate cancer by facilitating simultaneous targeting of tumour cells with subsequent drug delivery and imaging. In this report we describe the synthesis of hyperbranched polymers that are biocompatible, can specifically target and be internalised by prostate cancer cells (through targeting of prostate-specific membrane antigen – PSMA) and ultimately facilitate controlled delivery of a model drug. The theranostic also incorporates a far-red fluorescent dye that allows tracking of the polymer via optical imaging. Controlled synthesis of the polymer is achieved via reversible addition fragmentation chain transfer polymerisation of polyethylene glycol monomethyl methacrylate, with ethylene glycol dimethacrylate as the branching agent. Incorporation of 20 mol% of an hydrazide-methacrylate monomer allows post-ligation of a model drug, fluorene-2-carboxaldehyde, through a hydrolytically-degradable hydrazone linkage. The rate of degradation of this particular linker was enhanced at endosomal pH (pH = 5.5) where [similar]95% of the model drug was released in 4 hours compared to less than 5% released over the same period at physiological pH. The theranostic showed high uptake into prostate cancer cells expressing prostate-specific membrane antigen, while minimal uptake was observed in PC3 cells negative for PSMA, highlighting the enhanced efficacy of the targeting ligand.


Biomacromolecules | 2015

Evaluation of Polymeric Nanomedicines Targeted to PSMA: Effect of Ligand on Targeting Efficiency

Adrian V. Fuchs; Brian Wan-Chi Tse; Amanda K. Pearce; Mei-Chun Yeh; Nicholas L. Fletcher; Steve S. Huang; Warren D. Heston; Andrew K. Whittaker; Pamela J. Russell; Kristofer J. Thurecht

Targeted nanomedicines offer a strategy for greatly enhancing accumulation of a therapeutic within a specific tissue in animals. In this study, we report on the comparative targeting efficiency toward prostate-specific membrane antigen (PSMA) of a number of different ligands that are covalently attached by the same chemistry to a polymeric nanocarrier. The targeting ligands included a small molecule (glutamate urea), a peptide ligand, and a monoclonal antibody (J591). A hyperbranched polymer (HBP) was utilized as the nanocarrier and contained a fluorophore for tracking/analysis, whereas the pendant functional chain-ends provided a handle for ligand conjugation. Targeting efficiency of each ligand was assessed in vitro using flow cytometry and confocal microscopy to compare degree of binding and internalization of the HBPs by human prostate cancer (PCa) cell lines with different PSMA expression status (PC3-PIP (PSMA+) and PC3-FLU (PSMA-). The peptide ligand was further investigated in vivo, in which BALB/c nude mice bearing subcutaneous PC3-PIP and PC3-FLU PCa tumors were injected intravenously with the HBP-peptide conjugate and assessed by fluorescence imaging. Enhanced accumulation in the tumor tissue of PC3-PIP compared to PC3-FLU highlighted the applicability of this system as a future imaging and therapeutic delivery vehicle.


Polymer Chemistry | 2015

Utilising polymers to understand diseases: advanced molecular imaging agents

Adrian V. Fuchs; Anna C. Gemmell; Kristofer J. Thurecht

Polymers play an increasingly important role in the evolving field of nanomedicine. Their function might simply be to enhance the pharmacokinetics or pharmacodynamics of other nanomaterials or biologics, or to provide a scaffold for advanced molecular imaging probes that are activatable upon exposure to specific stimuli. In this review, we explore recent advances in the application of polymers in molecular imaging. Using selected examples that have demonstrated efficacious imaging in vivo, we describe the various aspects of polymeric systems that make them suitable for the most common imaging modalities. We then explore recent examples outlining the development of sophisticated nanomaterials that provide an insight into the function of biological systems through switchable probes. Finally, we describe new innovations in theranostics, where molecular imaging provides a means of monitoring therapeutic delivery. In all cases, we focus our discussion on examples where polymers have been used to enable molecular imaging to provide an insight on diseases in living animals.


Langmuir | 2012

Biomimetic silver-containing colloids of poly(2-methacryloyloxyethyl phosphorylcholine) and their film-formation properties.

Adrian V. Fuchs; Constanze Walter; Katharina Landfester; Ulrich Ziener

The synthesis of stable dispersions of hybrid colloids comprising copolymers of biocompatible 2-hydroxyethyl methacrylate (HEMA) and zwitterionic, biomimetic 2-methacryloyloxyethyl phosphorylcholine (MPC) incorporating antibacterial AgBF(4) by inverse miniemulsion is described. The prepared hybrid colloids were designed to provide both antibacterial and antifouling properties for the formation of interesting, multifunctional films. The obtained particles had sizes in the range of 130-160 nm with two different weight ratios of MPC to HEMA (1:10 and 2:5) and AgBF(4) contents between 0% and 15%. The silver salt takes on the role of the lipophobe in stabilizing the miniemulsion droplets against Ostwald ripening and is reduced after polymerization to Ag nanoparticles by gaseous hydrazine. Subsequently, the hybrid particles are transformed into smooth and stable films with thicknesses between 145 and 225 nm by simple drop casting and solvent annealing. The dispersions and films were thoroughly characterized by DLS, TEM, SEM, EDX, TGA, UV-vis spectroscopy, ICP-OES, XRD, AFM, and contact angle measurements. After immersion into water, the films did not show detectable leakage of silver, so they could be employed as dual-functional antifouling and antibacterial coatings.


Advanced Healthcare Materials | 2016

Overcoming Instability of Antibody-Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies

Christopher B. Howard; Nicholas L. Fletcher; Zachary H. Houston; Adrian V. Fuchs; Nathan R. B. Boase; Joshua D. Simpson; Lyndon J. Raftery; Tim Ruder; Martina L. Jones; Christopher J. de Bakker; Stephen M. Mahler; Kristofer J. Thurecht

Targeted nanomaterials promise improved therapeutic efficacy, however their application in nanomedicine is limited due to complexities associated with protein conjugations to synthetic nanocarriers. A facile method to generate actively targeted nanomaterials is developed and exemplified using polyethylene glycol (PEG)-functional nanostructures coupled to a bispecific antibody (BsAb) with dual specificity for methoxy PEG (mPEG) epitopes and cancer targets such as epidermal growth factor receptor (EGFR). The EGFR-mPEG BsAb binds with high affinity to recombinant EGFR (KD : 1 × 10(-9) m) and hyperbranched polymer (HBP) consisting of mPEG (KD : 10 × 10(-9) m) and demonstrates higher avidity for HBP compared to linear mPEG. The binding of BsAb-HBP bioconjugate to EGFR on MDA-MB-468 cancer cells is investigated in vitro using a fluorescently labeled polymer, and in in vivo xenograft models by small animal optical imaging. The antibody-targeted nanostructures show improved accumulation in tumor cells compared to non-targeted nanomaterials. This demonstrates a facile approach for tuning targeting ligand density on nanomaterials, by modulating surface functionality. Antibody fragments are tethered to the nanomaterial through simple mixing prior to administration to animals, overcoming the extensive procedures encountered for developing targeted nanomedicines.


Nanoscale | 2013

Enzyme cleavable nanoparticles from peptide based triblock copolymers

Adrian V. Fuchs; Niklas Kotman; Julien Andrieu; Volker Mailänder; Clemens K. Weiss; Katharina Landfester

A solid-phase synthesis based approach towards protease cleavable polystyrene-peptide-polystyrene triblock copolymers and their formulation to nanoparticulate systems is presented. These nanoparticles are suitable for the optical detection of an enzyme and have the potential for application as a drug delivery system. Two different peptide sequences, one cleaved by trypsin (GFF), the other by hepsin (RQLRVVGG), a protease overexpressed in early stages of prostate cancer, are used as the central part of the triblock. For optical detection a fluorophore-quencher pair is introduced around the cleavage sequence. The solid phase synthesis is conduced such that two identical sequences are synthesized from one branching point. Eventually, carboxy-terminated polystyrene is introduced into the peptide synthesizer and coupled to the amino-termini of the branched sequence. Upon cleavage, a fragment is released from the triblock copolymer, which has the potential for use in drug delivery applications. Conducting the whole synthesis on a solid phase in the peptide synthesizer avoids solubility issues and post-synthetic purification steps. Due to the hydrophobic PS-chains, the copolymer can easily be formulated to form nanoparticles using a nanoprecipitation process. Incubation of the nanoparticles with the respective enzymes leads to a significant increase of the fluorescence from the incorporated fluorophore, thereby indicating cleavage of the peptide sequence and decomposition of the particles.


Chemical Communications | 2015

Reversible activation of pH-sensitive cell penetrating peptides attached to gold surfaces

Joe E. Baio; Denise Schach; Adrian V. Fuchs; Lars Schmüser; Nils Billecke; Christoph Bubeck; Katharina Landfester; Mischa Bonn; Michael Bruns; Clemens K. Weiss; Tobias Weidner

pH-sensitive viral fusion protein mimics are widely touted as a promising route towards site-specific delivery of therapeutic compounds across lipid membranes. Here, we demonstrate that a fusion protein mimic, designed to achieve a reversible, pH-driven helix-coil transition mechanism, retains its functionality when covalently bound to a surface.


Polymer Chemistry | 2017

Switchable 19F MRI polymer theranostics: towards in situ quantifiable drug release

Adrian V. Fuchs; Abhijeet P. Bapat; Gary Cowin; Kristofer J. Thurecht

A switchable polymeric 19F magnetic resonance imaging (MRI) contrast agent was synthesised whereby the transverse (T2) relaxation times increased as a therapeutic was released from a hyperbranched polymer (HBP) scaffold. The HBP comprised of poly(ethyleneglycol) monomethyl ether methacrylate (PEGMA), a fluorinated monomer (trifluoroethyl acrylate), and a suitable monomer for post-conjugation of a drug molecule. Three different hydrophobic drugs were investigated during design of the theranostic; doxorubicin (DOX) and docetaxel (DTX) were conjugated to the HBPs through an acid-cleavable hydrazone linkage, while camptothecin (CPT) was integrated into the HBP via polymerisation of a self-immolative disulphide-linked monomer. 19F NMR relaxometry measurements showed that the increase in hydrophobicity caused by the incorporation of the therapeutic drug led to a decrease in 19F T2 relaxation times and decrease in image intensity. However, upon drug release, the hydrophobicity of the HBP decreased which in turn led to improved mobility of the fluorinated moieities. This was manifest in a restoration of longer 19F T2 relaxation times and an increased image intensity compared to the drug-loaded polymer. This work provides a basis for a MRI contrast agent capable of quantifying in situ drug release.


Molecular Pharmaceutics | 2017

Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics

Yongmei Zhao; Zachary H. Houston; Joshua D. Simpson; L. Chen; Nicholas L. Fletcher; Adrian V. Fuchs; Idriss Blakey; Kristofer J. Thurecht

Theranostics is a strategy that combines multiple functions such as targeting, stimulus-responsive drug release, and diagnostic imaging into a single platform, often with the aim of developing personalized medicine.1,2 Based on this concept, several well-established hyperbranched polymeric theranostic nanoparticles were synthesized and characterized as model nanomedicines to investigate how their properties affect the distribution of loaded drugs at both the cell and whole animal levels. An 8-mer peptide aptamer was covalently bound to the periphery of the nanoparticles to achieve both targeting and potential chemosensitization functionality against heat shock protein 70 (Hsp70). Doxorubicin was also bound to the polymeric carrier as a model chemotherapeutic drug through a degradable hydrazone bond, enabling pH-controlled release under the mildly acid conditions that are found in the intracellular compartments of tumor cells. In order to track the nanoparticles, cyanine-5 (Cy5) was incorporated into the polymer as an optical imaging agent. In vitro cellular uptake was assessed for the hyperbranched polymer containing both doxorubicin (DOX) and Hsp70 targeted peptide aptamer in live MDA-MB-468 cells, and was found to be greater than that of either the untargeted, DOX-loaded polymer or polymer alone due to the specific affinity of the peptide aptamer for the breast cancer cells. This was also validated in vivo with the targeted polymers showing much higher accumulation within the tumor 48 h postinjection than the untargeted analogue. More detailed assessment of the nanomedicine distribution was achieved by directly following the polymeric carrier and the doxorubicin at both the in vitro cellular level via compartmental analysis of confocal images of live cells and in whole tumors ex vivo using confocal imaging to visualize the distribution of the drug in tumor tissue as a function of distance from blood vessels. Our results indicate that this polymeric carrier shows promise as a cancer theranostic, demonstrating active targeting to tumor cells with the capability for simultaneous drug release.


Pharmaceutical Research | 2016

Targeting Nanomedicines to Prostate Cancer: Evaluation of Specificity of Ligands to Two Different Receptors In Vivo

Amanda K. Pearce; Adrian V. Fuchs; Nicholas L. Fletcher; Kristofer J. Thurecht

PurposeThis manuscript utilised in vivo multispectral imaging to demonstrate the efficacy of two different nanomedicine formulations for targeting prostate cancer.MethodsPegylated hyperbranched polymers were labelled with fluorescent markers and targeting ligands against two different prostate cancer markers; prostate specific membrane antigen (PSMA) and the protein kinase, EphrinA2 receptor (EphA2). The PSMA targeted nanomedicine utilised a small molecule glutamate urea inhibitor of the protein, while the EphA2 targeted nanomedicine was conjugated to a single-chain variable fragment based on the antibody 4B3 that has shown high affinity to the receptor.ResultsHyperbranched polymers were synthesised bearing the different targeting ligands. In the case of the EphA2-targeting nanomedicine, significant in vitro uptake was observed in PC3 prostate cancer cells that overexpress the receptor, while low uptake was observed in LNCaP cells (that have minimal expression of this receptor). Conversely, the PSMA-targeted nanomedicine showed high uptake in LNCaP cells, with only minor uptake in the PC3 cells. In a dual-tumour xenograft mouse model, the nanomedicines showed high uptake in tumours in which the receptor was overexpressed, with only minimal non-specific accumulation in the low-expression tumours.ConclusionsThis work highlighted the importance of clearly defining the target of interest in next-generation nanomedicines, and suggests that dual-targeting in such nanomedicines may be a means to achieve greater efficacy.

Collaboration


Dive into the Adrian V. Fuchs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela J. Russell

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Wan-Chi Tse

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge