Brian Wan-Chi Tse
Queensland University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian Wan-Chi Tse.
Nanomedicine: Nanotechnology, Biology and Medicine | 2015
Brian Wan-Chi Tse; Gary Cowin; Carolina Soekmadji; Lidija Jovanovic; Raja S. Vasireddy; Ming-Tat Ling; Aparajita Khatri; Tianqing Liu; Benjamin Thierry; Pamela J. Russell
AIM To evaluate the potential of newly-developed, biocompatible iron oxide magnetic nanoparticles (MNPs) conjugated with J591, an antibody to an extracellular epitope of PSMA, to enhance MRI of prostate cancer. MATERIALS & METHODS Specific binding to PSMA by J591-MNP was investigated in vitro. MRI studies were performed on orthotopic tumor-bearing NOD.SCID mice 2 h and 24 h after intravenous injection of J591-MNPs, or non-targeting MNPs. RESULTS & CONCLUSION In vitro, MNPs did not affect prostate cancer cell viability, and conjugation to J591 did not compromise antibody specificity and enhanced cellular iron uptake. Magnetic resonance contrast of tumors was increased in vivo using PSMA-targeting MNPs, but not by non-targeting MNPs. This provides proof-of-concept that PSMA-targeting MNPs have potential to enhance magnetic resonance detection/localization of prostate cancer.
Prostate Cancer | 2012
Brian Wan-Chi Tse; Kieran F. Scott; Pamela J. Russell
Tumour necrosis factor (TNF) is a pleiotropic cytokine with dual roles in cancer biology including prostate cancer (PCa). On the one hand, there is evidence that it stimulates tumour angiogenesis, is involved in the initiation of PCa from an androgen-dependent to a castrate resistant state, plays a role in epithelial to mesenchymal plasticity, and may contribute to the aberrant regulation of eicosanoid pathways. On the other hand, TNF has also been reported to inhibit neovascularisation, induce apoptosis of PCa cells, and stimulate antitumour immunity. Much of the confusion surrounding its seemingly paradoxical roles in cancer biology stems from the dependence of its effects on the biological model within which TNF is investigated. This paper will address some of these issues and also discuss the therapeutic implications.
PLOS ONE | 2011
Brian Wan-Chi Tse; Pamela J. Russell; Matthias Lochner; Irmgard Förster; Carl A. Power
Interleukin(IL)-18 is a pleiotrophic cytokine with functions in immune modulation, angiogenesis and bone metabolism. In this study, the potential of IL-18 as an immunotherapy for prostate cancer (PCa) was examined using the murine model of prostate carcinoma, RM1 and a bone metastatic variant RM1(BM)/B4H7-luc. RM1 and RM1(BM)/B4H7-luc cells were stably transfected to express bioactive IL-18. These cells were implanted into syngeneic immunocompetent mice, with or without an IL-18-neutralising antibody (αIL-18, SK113AE4). IL-18 significantly inhibited the growth of both subcutaneous and orthotopic RM1 tumors and the IL-18 neutralizing antibody abrogated the tumor growth-inhibition. In vivo neutralization of interferon-gamma (IFN-γ) completely eliminated the anti-tumor effects of IL-18 confirming an essential role of IFN-γ as a down-stream mediator of the anti-tumor activity of IL-18. Tumors from mice in which IL-18 and/or IFN-γ was neutralized contained significantly fewer CD4+ and CD8+ T cells than those with functional IL-18. The essential role of adaptive immunity was demonstrated as tumors grew more rapidly in RAG1−/− mice or in mice depleted of CD4+ and/or CD8+ cells than in normal mice. The tumors in RAG1−/− mice were also significantly smaller when IL-18 was present, indicating that innate immune mechanisms are involved. IL-18 also induced an increase in tumor infiltration of macrophages and neutrophils but not NK cells. In other experiments, direct injection of recombinant IL-18 into established tumors also inhibited tumor growth, which was associated with an increase in intratumoral macrophages, but not T cells. These results suggest that local IL-18 in the tumor environment can significantly potentiate anti-tumor immunity in the prostate and clearly demonstrate that this effect is mediated by innate and adaptive immune mechanisms.
Annals of Oncology | 2014
Brian Wan-Chi Tse; Andrew M. Collins; Martin K. Oehler; A. Zippelius; Viola Heinzelmann-Schwarz
Cytoreductive surgery and chemotherapy continue to be the mainstay of ovarian cancer treatment. However, as mortality from advanced ovarian cancer remains very high, novel therapies are required to be integrated into existing treatment regimens. Immunotherapy represents an alternative and rational therapeutic approach for ovarian cancer based on a body of evidence supporting a protective role of the immune system against these cancers, and on the clinical success of immunotherapy in other malignancies. Whether or not immunotherapy will have a role in the future management of ovarian cancer is too early to tell, but research in this field is active. This review will discuss recent clinical developments of selected immunotherapies for ovarian cancer which fulfil the following criteria: (i) they are antibody-based, (ii) target a distinct immunological pathway, and (iii) have reached the clinical trial stage. Specifically, the focus is on Catumaxomab (anti-EpCAM×anti-CD3), Abagovomab, Oregovomab (anti-CA125), Daclizumab (anti-CD25), Ipilimumab (anti-CTLA-4), and MXD-1105 (anti-PD-L1). Catumaxomab has reached phase III clinical trials and exhibits promise with reports, showing that it can cause a significant and sustained reduction in ascites. Phase I-III clinical trials continue to be conducted on the other antibodies, some of which have had encouraging reports. We will also provide our perspective on the future of immunotherapy for ovarian cancer, and how it may be best employed in treatment regimens.
Polymer Chemistry | 2014
Amanda K. Pearce; Barbara E. Rolfe; Pamela J. Russell; Brian Wan-Chi Tse; Andrew K. Whittaker; Adrian V. Fuchs; Kristofer J. Thurecht
Theranostics offers an improved treatment strategy for prostate cancer by facilitating simultaneous targeting of tumour cells with subsequent drug delivery and imaging. In this report we describe the synthesis of hyperbranched polymers that are biocompatible, can specifically target and be internalised by prostate cancer cells (through targeting of prostate-specific membrane antigen – PSMA) and ultimately facilitate controlled delivery of a model drug. The theranostic also incorporates a far-red fluorescent dye that allows tracking of the polymer via optical imaging. Controlled synthesis of the polymer is achieved via reversible addition fragmentation chain transfer polymerisation of polyethylene glycol monomethyl methacrylate, with ethylene glycol dimethacrylate as the branching agent. Incorporation of 20 mol% of an hydrazide-methacrylate monomer allows post-ligation of a model drug, fluorene-2-carboxaldehyde, through a hydrolytically-degradable hydrazone linkage. The rate of degradation of this particular linker was enhanced at endosomal pH (pH = 5.5) where [similar]95% of the model drug was released in 4 hours compared to less than 5% released over the same period at physiological pH. The theranostic showed high uptake into prostate cancer cells expressing prostate-specific membrane antigen, while minimal uptake was observed in PC3 cells negative for PSMA, highlighting the enhanced efficacy of the targeting ligand.
British Journal of Cancer | 2014
Francis Jacob; Merrina Anugraham; Tatiana Pochechueva; Brian Wan-Chi Tse; Shahidul Alam; Rea Guertler; Nicolai V. Bovin; André Fedier; Neville F. Hacker; Margaret E. Huflejt; Nicolle H. Packer; Viola Heinzelmann-Schwarz
Background:The level of plasma-derived naturally circulating anti-glycan antibodies (AGA) to P1 trisaccharide has previously been shown to significantly discriminate between ovarian cancer patients and healthy women. Here we aim to identify the Ig class that causes this discrimination, to identify on cancer cells the corresponding P1 antigen recognised by circulating anti-P1 antibodies and to shed light into the possible function of this glycosphingolipid.Methods:An independent Australian cohort was assessed for the presence of anti-P1 IgG and IgM class antibodies using suspension array. Monoclonal and human derived anti-glycan antibodies were verified using three independent glycan-based immunoassays and flow cytometry-based inhibition assay. The P1 antigen was detected by LC-MS/MS and flow cytometry. FACS-sorted cell lines were studied on the cellular migration by colorimetric assay and real-time measurement using xCELLigence system.Results:Here we show in a second independent cohort (n=155) that the discrimination of cancer patients is mediated by the IgM class of anti-P1 antibodies (P=0.0002). The presence of corresponding antigen P1 and structurally related epitopes in fresh tissue specimens and cultured cancer cells is demonstrated. We further link the antibody and antigen (P1) by showing that human naturally circulating and affinity-purified anti-P1 IgM isolated from patients ascites can bind to naturally expressed P1 on the cell surface of ovarian cancer cells. Cell-sorted IGROV1 was used to obtain two study subpopulations (P1-high, 66.1%; and P1-low, 33.3%) and observed that cells expressing high P1-levels migrate significantly faster than those with low P1-levels.Conclusions:This is the first report showing that P1 antigen, known to be expressed on erythrocytes only, is also present on ovarian cancer cells. This suggests that P1 is a novel tumour-associated carbohydrate antigen recognised by the immune system in patients and may have a role in cell migration. The clinical value of our data may be both diagnostic and prognostic; patients with low anti-P1 IgM antibodies present with a more aggressive phenotype and earlier relapse.
BioMed Research International | 2014
Brian Wan-Chi Tse; Lidija Jovanovic; Colleen C. Nelson; Paul de Souza; Carl A. Power; Pamela J. Russell
The mainstay therapeutic strategy for metastatic castrate-resistant prostate cancer (CRPC) continues to be androgen deprivation therapy usually in combination with chemotherapy or androgen receptor targeting therapy in either sequence, or recently approved novel agents such as Radium 223. However, immunotherapy has also emerged as an option for the treatment of this disease following the approval of sipuleucel-T by the FDA in 2010. Immunotherapy is a rational approach for prostate cancer based on a body of evidence suggesting these cancers are inherently immunogenic and, most importantly, that immunological interventions can induce protective antitumour responses. Various forms of immunotherapy are currently being explored clinically, with the most common being cancer vaccines (dendritic-cell, viral, and whole tumour cell-based) and immune checkpoint inhibition. This review will discuss recent clinical developments of immune-based therapies for prostate cancer that have reached the phase III clinical trial stage. A perspective of how immunotherapy could be best employed within current treatment regimes to achieve most clinical benefits is also provided.
Biomacromolecules | 2015
Adrian V. Fuchs; Brian Wan-Chi Tse; Amanda K. Pearce; Mei-Chun Yeh; Nicholas L. Fletcher; Steve S. Huang; Warren D. Heston; Andrew K. Whittaker; Pamela J. Russell; Kristofer J. Thurecht
Targeted nanomedicines offer a strategy for greatly enhancing accumulation of a therapeutic within a specific tissue in animals. In this study, we report on the comparative targeting efficiency toward prostate-specific membrane antigen (PSMA) of a number of different ligands that are covalently attached by the same chemistry to a polymeric nanocarrier. The targeting ligands included a small molecule (glutamate urea), a peptide ligand, and a monoclonal antibody (J591). A hyperbranched polymer (HBP) was utilized as the nanocarrier and contained a fluorophore for tracking/analysis, whereas the pendant functional chain-ends provided a handle for ligand conjugation. Targeting efficiency of each ligand was assessed in vitro using flow cytometry and confocal microscopy to compare degree of binding and internalization of the HBPs by human prostate cancer (PCa) cell lines with different PSMA expression status (PC3-PIP (PSMA+) and PC3-FLU (PSMA-). The peptide ligand was further investigated in vivo, in which BALB/c nude mice bearing subcutaneous PC3-PIP and PC3-FLU PCa tumors were injected intravenously with the HBP-peptide conjugate and assessed by fluorescence imaging. Enhanced accumulation in the tumor tissue of PC3-PIP compared to PC3-FLU highlighted the applicability of this system as a future imaging and therapeutic delivery vehicle.
BioMed Research International | 2013
Michelle Buehler; Brian Wan-Chi Tse; Alix Leboucq; Francis Jacob; Rosmarie Caduff; Daniel Fink; Darlene R. Goldstein; Viola Heinzelmann-Schwarz
Seeking new biomarkers for epithelial ovarian cancer, the fifth most common cause of death from all cancers in women and the leading cause of death from gynaecological malignancies, we performed a meta-analysis of three independent studies and compared the results in regard to clinicopathological parameters. This analysis revealed that GAS6 was highly expressed in ovarian cancer and therefore was selected as our candidate of choice. GAS6 encodes a secreted protein involved in physiological processes including cell proliferation, chemotaxis, and cell survival. We performed immunohistochemistry on various ovarian cancer tissues and found that GAS6 expression was elevated in tumour tissue samples compared to healthy control samples (P < 0.0001). In addition, GAS6 expression was also higher in tumours from patients with residual disease compared to those without. Our data propose GAS6 as an independent predictor of poor survival, suggesting GAS6, both on the mRNA and on the protein level, as a potential biomarker for ovarian cancer. In clinical practice, the staining of a tumour biopsy for GAS6 may be useful to assess cancer prognosis and/or to monitor disease progression.
Clinical Cancer Research | 2015
Francis Jacob; Merrina Anugraham; Tatiana Pochechueva; Brian Wan-Chi Tse; Shahidul Alam; Rea Guertler; Nicolai V. Bovin; André Fedier; Neville F. Hacker; Margaret E. Huflejt; Nicolle H. Packer; Viola Heinzelmann-Schwarz
Recent research strongly suggests a role of plasma-derived anti-P 1 antibodies (AGA) in ovarian cancer, as demonstrated by three independent glycan-based immunoassays. The level of these antibodies was lower in ovarian cancer patients and therefore discriminate cancer patients from healthy women. Here we investigate in a separate Australian cohort (n=155) whether IgM or IgG to P 1 accounts for this discrimination and whether plasma matched ascites samples contain AGA. We also aimed to identify the P 1 antigen in cancer tissue and cultured cells that are recognized by naturally occurring anti-P 1 IgM and to investigate the potential function in respect to cell migration. Our results demonstrated that the IgM to P 1 discriminates patients with ovarian cancer from healthy controls (p=0.0002) and that lower anti-P 1 antibody levels are associated with a slightly higher risk for early relapse. Mass spectrometry identified P 1 and structurally related epitopes in fresh tissue specimens and cultured cells. Ovarian cancer cell line IGROV1 was identified to be P 1 -positive while others (n=7) including human ovarian surface epithelial cells were negative determined by comprehensive flow cytometry. Epitope-mapped and characterized affinity purified anti-P 1 antibodies from ascites were shown to bind P 1 -expressing cancer cells. IGROV1 was cell-sorted into two subpopulations, P 1 –high (66.1%) and P 1 -low (33.3%) and we found a significantly higher migration rate in P 1 -high expressing cells. Plasma-and ascites-derived natural anti-P 1 IgM bind to the corresponding selfantigen expressed on the ovarian cancer cell surface. These findings are in concordance with the literature on natural IgM as part of the innate immune system recognizing carbo-neo-epitopes. These results deliver the first evidence that P 1 may also be involved in cell migration and therefore may have a role in metastasis. Citation Format: Francis Jacob, Merrina Anugraham, Tatiana Pochechueva, Brian Wan-Chi Tse, Shahidul Alam, Rea Guertler, Nicolai V. Bovin, Andre Fedier, Neville F. Hacker, Margaret E. Huflejt, Nicolle Packer, Viola A. Heinzelmann-Schwarz. Natural anti-glycan IgM recognize P1 glycosphingolipid expressed on ovarian cancer cells [abstract]. In: Proceedings of the 10th Biennial Ovarian Cancer Research Symposium; Sep 8-9, 2014; Seattle, WA. Philadelphia (PA): AACR; Clin Cancer Res 2015;21(16 Suppl):Abstract nr POSTER-BIOL-1322.