Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian W. Moore is active.

Publication


Featured researches published by Adrian W. Moore.


Neuron | 2007

Knot/Collier and Cut Control Different Aspects of Dendrite Cytoskeleton and Synergize to Define Final Arbor Shape

Shiho Jinushi-Nakao; Ramanathan Arvind; Reiko Amikura; Emi Kinameri; Andrew Winston Liu; Adrian W. Moore

In a complex nervous system, neuronal functional diversity is reflected in the wide variety of dendritic arbor shapes. Different neuronal classes are defined by class-specific transcription factor combinatorial codes. We show that the combination of the transcription factors Knot and Cut is particular to Drosophila class IV dendritic arborization (da) neurons. Knot and Cut control different aspects of the dendrite cytoskeleton, promoting microtubule- and actin-based dendritic arbors, respectively. Knot delineates class IV arbor morphology by simultaneously synergizing with Cut to promote complexity and repressing Cut-mediated promotion of dendritic filopodia/spikes. Knot increases dendritic arbor outgrowth through promoting the expression of Spastin, a microtubule-severing protein disrupted in autosomal dominant hereditary spastic paraplegia (AD-HSP). Knot and Cut may modulate cellular mechanisms that are conserved between Drosophila and vertebrates. Hence, this study gives significant general insight into how multiple transcription factors combine to control class-specific dendritic arbor morphology through controlling different aspects of the cytoskeleton.


Development | 2012

The Prdm family: expanding roles in stem cells and development

Tobias Hohenauer; Adrian W. Moore

Members of the Prdm family are characterized by an N-terminal PR domain that is related to the SET methyltransferase domain, and multiple zinc fingers that mediate sequence-specific DNA binding and protein-protein interactions. Prdm factors either act as direct histone methyltransferases or recruit a suite of histone-modifying enzymes to target promoters. In this way, they function in many developmental contexts to drive and maintain cell state transitions and to modify the activity of developmental signalling pathways. Here, we provide an overview of the structure and function of Prdm family members and discuss the roles played by these proteins in stem cells and throughout development.


PLOS ONE | 2008

Prdm Proto-Oncogene Transcription Factor Family Expression and Interaction with the Notch-Hes Pathway in Mouse Neurogenesis

Emi Kinameri; Takashi Inoue; Jun Aruga; Itaru Imayoshi; Ryoichiro Kageyama; Tomomi Shimogori; Adrian W. Moore

Background Establishment and maintenance of a functional central nervous system (CNS) requires a highly orchestrated process of neural progenitor cell proliferation, cell cycle exit, and differentiation. An evolutionary conserved program consisting of Notch signalling mediated by basic Helix-Loop-Helix (bHLH) transcription factor activity is necessary for both the maintenance of neural progenitor cell character and the progression of neurogenesis; however, additional players in mammalian CNS neural specification remain largely unknown. In Drosophila we recently characterized Hamlet, a transcription factor that mediates Notch signalling and neural cell fate. Methodology/Principal Findings Hamlet is a member of the Prdm (PRDI-BF1 and RIZ homology domain containing) proto-oncogene transcription factor family, and in this study we report that multiple genes in the Prdm family (Prdm6, 8, 12, 13 and 16) are expressed in the developing mouse CNS in a spatially and temporally restricted manner. In developing spinal cord Prdm8, 12 and 13 are expressed in precise neuronal progenitor zones suggesting that they may specify discrete neuronal subtypes. In developing telencephalon Prdm12 and 16 are expressed in the ventricular zone in a lateral to medial graded manner, and Prdm8 is expressed in a complementary domain in postmitotic neurons. In postnatal brain Prdm8 additionally shows restricted expression in cortical layers 2/3 and 4, the hippocampus, and the amygdala. To further elucidate roles of Prdm8 and 16 in the developing telencephalon we analyzed the relationship between these factors and the bHLH Hes (Hairy and enhancer of split homolog) effectors of Notch signalling. In Hes null telencephalon neural differentiation is enhanced, Prdm8 expression is upregulated, and Prdm16 expression is downregulated; conversely in utero electroporation of Hes1 into the developing telencephalon upregulates Prdm16 expression. Conclusions/Significance Our data demonstrate that Prdm genes are regulated by the Notch-Hes pathway and represent strong candidates to control neural class specification and the sequential progression of mammalian CNS neurogenesis.


Nature Neuroscience | 2012

Chromatin modification of Notch targets in olfactory receptor neuron diversification

Keita Endo; M. Rezaul Karim; Hiroaki Taniguchi; Alena Krejci; Emi Kinameri; Matthias Siebert; Kei Ito; Sarah Bray; Adrian W. Moore

Neuronal-class diversification is central during neurogenesis. This requirement is exemplified in the olfactory system, which utilizes a large array of olfactory receptor neuron (ORN) classes. We discovered an epigenetic mechanism in which neuron diversity is maximized via locus-specific chromatin modifications that generate context-dependent responses from a single, generally used intracellular signal. Each ORN in Drosophila acquires one of three basic identities defined by the compound outcome of three iterated Notch signaling events during neurogenesis. Hamlet, the Drosophila Evi1 and Prdm16 proto-oncogene homolog, modifies cellular responses to these iteratively used Notch signals in a context-dependent manner, and controls odorant receptor gene choice and ORN axon targeting specificity. In nascent ORNs, Hamlet erases the Notch state inherited from the parental cell, enabling a modified response in a subsequent round of Notch signaling. Hamlet directs locus-specific modifications of histone methylation and histone density and controls accessibility of the DNA-binding protein Suppressor of Hairless at the Notch target promoter.


PLOS ONE | 2009

RNAi Screening in Drosophila Cells Identifies New Modifiers of Mutant Huntingtin Aggregation

Joanna Doumanis; Koji Wada; Yoshihiro Kino; Adrian W. Moore; Nobuyuki Nukina

The fruitfly Drosophila melanogaster is well established as a model system in the study of human neurodegenerative diseases. Utilizing RNAi, we have carried out a high-throughput screen for modifiers of aggregate formation in Drosophila larval CNS-derived cells expressing mutant human Huntingtin exon 1 fused to EGFP with an expanded polyglutamine repeat (62Q). 7200 genes, encompassing around 50% of the Drosophila genome, were screened, resulting in the identification of 404 candidates that either suppress or enhance aggregation. These candidates were subjected to secondary screening in normal length (18Q)-expressing cells and pruned to remove dsRNAs with greater than 10 off-target effects (OTEs). De novo RNAi probes were designed and synthesized for the remaining 68 candidates. Following a tertiary round of screening, 21 high confidence candidates were analyzed in vivo for their ability to modify mutant Huntingtin-induced eye degeneration and brain aggregation. We have established useful models for the study of human HD using the fly, and through our RNAi screen, we have identified new modifiers of mutant human Huntingtin aggregation and aggregate formation in the brain. Newly identified modifiers including genes related to nuclear transport, nucleotide processes, and signaling, may be involved in polyglutamine aggregate formation and Huntington disease cascades.


Proceedings of the National Academy of Sciences of the United States of America | 2013

An MLL-dependent network sustains hematopoiesis

Erika L. Artinger; Bibhu P. Mishra; Kristin M. Zaffuto; Bin E. Li; Elaine K.Y. Chung; Adrian W. Moore; Yufei Chen; Chao Cheng; Patricia Ernst

The histone methyltransferase Mixed Lineage Leukemia (MLL) is essential to maintain hematopoietic stem cells and is a leukemia protooncogene. Although clustered homeobox genes are well-characterized targets of MLL and MLL fusion oncoproteins, the range of Mll-regulated genes in normal hematopoietic cells remains unknown. Here, we identify and characterize part of the Mll-dependent transcriptional network in hematopoietic stem cells with an integrated approach by using conditional loss-of-function models, genomewide expression analyses, chromatin immunoprecipitation, and functional rescue assays. The Mll-dependent transcriptional network extends well beyond the previously appreciated Hox targets, is comprised of many characterized regulators of self-renewal, and contains target genes that are both dependent and independent of the MLL cofactor, Menin. Interestingly, PR-domain containing 16 emerged as a target gene that is uniquely effective at partially rescuing Mll-deficient hematopoietic stem and progenitor cells. This work highlights the tissue-specific nature of regulatory networks under the control of MLL/Trithorax family members and provides insight into the distinctions between the participation of MLL in normal hematopoiesis and in leukemia.


Nature Neuroscience | 2015

Centrosomin represses dendrite branching by orienting microtubule nucleation

Cagri Yalgin; Saman Ebrahimi; Caroline Delandre; Li Foong Yoong; Saori Akimoto; Heidi Tran; Reiko Amikura; Rebecca Spokony; Benjamin Torben-Nielsen; Kevin P. White; Adrian W. Moore

Neuronal dendrite branching is fundamental for building nervous systems. Branch formation is genetically encoded by transcriptional programs to create dendrite arbor morphological diversity for complex neuronal functions. In Drosophila sensory neurons, the transcription factor Abrupt represses branching via an unknown effector pathway. Targeted screening for branching-control effectors identified Centrosomin, the primary centrosome-associated protein for mitotic spindle maturation. Centrosomin repressed dendrite branch formation and was used by Abrupt to simplify arbor branching. Live imaging revealed that Centrosomin localized to the Golgi cis face and that it recruited microtubule nucleation to Golgi outposts for net retrograde microtubule polymerization away from nascent dendrite branches. Removal of Centrosomin enabled the engagement of wee Augmin activity to promote anterograde microtubule growth into the nascent branches, leading to increased branching. The findings reveal that polarized targeting of Centrosomin to Golgi outposts during elaboration of the dendrite arbor creates a local system for guiding microtubule polymerization.


Development | 2012

Fascin controls neuronal class-specific dendrite arbor morphology

Julia Nagel; Caroline Delandre; Yun Zhang; Friedrich Forstner; Adrian W. Moore; Gaia Tavosanis

The branched morphology of dendrites represents a functional hallmark of distinct neuronal types. Nonetheless, how diverse neuronal class-specific dendrite branches are generated is not understood. We investigated specific classes of sensory neurons of Drosophila larvae to address the fundamental mechanisms underlying the formation of distinct branch types. We addressed the function of fascin, a conserved actin-bundling protein involved in filopodium formation, in class III and class IV sensory neurons. We found that the terminal branchlets of different classes of neurons have distinctive dynamics and are formed on the basis of molecularly separable mechanisms; in particular, class III neurons require fascin for terminal branching whereas class IV neurons do not. In class III neurons, fascin controls the formation and dynamics of terminal branchlets. Previous studies have shown that transcription factor combinations define dendrite patterns; we find that fascin represents a downstream component of such programs, as it is a major effector of the transcription factor Cut in defining class III-specific dendrite morphology. Furthermore, fascin defines the morphological distinction between class III and class IV neurons. In fact, loss of fascin function leads to a partial conversion of class III neurons to class IV characteristics, while the reverse effect is obtained by fascin overexpression in class IV neurons. We propose that dedicated molecular mechanisms underlie the formation and dynamics of distinct dendrite branch types to elicit the accurate establishment of neuronal circuits.


PLOS ONE | 2014

Mice Carrying a Hypomorphic Evi1 Allele Are Embryonic Viable but Exhibit Severe Congenital Heart Defects

Emilie A. Bard-Chapeau; Dorota Szumska; Bindya Jacob; Belinda Q. Chua; Gouri Chatterjee; Yi Zhang; Jerrold M. Ward; Fatma Urun; Emi Kinameri; Stéphane Vincent; Sayadi Ahmed; Shoumo Bhattacharya; Motomi Osato; Archibald S. Perkins; Adrian W. Moore; Nancy A. Jenkins; Neal G. Copeland

The ecotropic viral integration site 1 (Evi1) oncogenic transcription factor is one of a number of alternative transcripts encoded by the Mds1 and Evi1 complex locus (Mecom). Overexpression of Evi1 has been observed in a number of myeloid disorders and is associated with poor patient survival. It is also amplified and/or overexpressed in many epithelial cancers including nasopharyngeal carcinoma, ovarian carcinoma, ependymomas, and lung and colorectal cancers. Two murine knockout models have also demonstrated Evi1s critical role in the maintenance of hematopoietic stem cell renewal with its absence resulting in the death of mutant embryos due to hematopoietic failure. Here we characterize a novel mouse model (designated Evi1fl3) in which Evi1 exon 3, which carries the ATG start, is flanked by loxP sites. Unexpectedly, we found that germline deletion of exon3 produces a hypomorphic allele due to the use of an alternative ATG start site located in exon 4, resulting in a minor Evi1 N-terminal truncation and a block in expression of the Mds1-Evi1 fusion transcript. Evi1δex3/δex3 mutant embryos showed only a mild non-lethal hematopoietic phenotype and bone marrow failure was only observed in adult Vav-iCre/+, Evi1fl3/fl3 mice in which exon 3 was specifically deleted in the hematopoietic system. Evi1δex3/δex3 knockout pups are born in normal numbers but die during the perinatal period from congenital heart defects. Database searches identified 143 genes with similar mutant heart phenotypes as those observed in Evi1δex3/δex3 mutant pups. Interestingly, 42 of these congenital heart defect genes contain known Evi1-binding sites, and expression of 18 of these genes are also effected by Evi1 siRNA knockdown. These results show a potential functional involvement of Evi1 target genes in heart development and indicate that Evi1 is part of a transcriptional program that regulates cardiac development in addition to the development of blood.


Journal of Neurogenetics | 2010

Selection of behaviors and segmental coordination during larval locomotion is disrupted by nuclear polyglutamine inclusions in a new Drosophila Huntington's disease-like model.

Yoichi Nishimura; Cagri Yalgin; Saori Akimoto; Joanna Doumanis; Ruiko Sasajima; Nobuyuki Nukina; Hiroyoshi Miyakawa; Adrian W. Moore; Takako Morimoto

Abstract: Huntingtons disease is an autosomal dominant neurodegenerative disorder that is caused by abnormal expansion of a polyglutamine tract in the huntingtin protein, resulting in intracellular aggregate formation and neurodegeneration. How neuronal cells are affected by such a polyglutamine tract expansion remains obscure. To dissect the ways in which polyglutamine expansion can cause neural dysfunction, the authors generated Drosophila transgenic strains expressing either a nuclear targeted or cytoplasmic form of pathogenic (NHtt-152QNLS, NHtt-152Q), or nonpathogenic (NHtt-18QNLS, NHtt-18Q) N-terminal human huntingtin. These proteins were expressed in the dendritic arborization neurons of the larval peripheral nervous system and their effects on neuronal survival, morphology, and larval locomotion were examined. The authors found that NHtt-152QNLS larvae had altered dendrite morphology and larval locomotion, whereas NHtt-152Q, NHtt-18QNLS, and NHtt-18Q larvae did not. Furthermore, the authors examined the physiological defect underlying this disrupted larval locomotion in detail by recording spontaneous ongoing segmental nerve activity. NHtt-152QNLS larvae displayed uncoordinated activity between anterior and posterior segments. Moreover, anterior segments had shorter bursts and longer interburst intervals in NHtt-152QNLS larvae than in NHtt-18QNLS larvae, whereas posterior segments had longer bursts and shorter interburst intervals. These results suggest that the pathogenic protein disrupts neuron function without inducing cell death, and describe how this dysfunction leads to a locomotor defect. These results also suggest that sensory inputs are necessary for the coordination of anterior and posterior body parts during locomotion. From these analyses the authors show that examination of motor behaviors in the Drosophila larvae is a powerful new model to dissect non–cell-lethal mechanisms of mutant Htt toxicity.

Collaboration


Dive into the Adrian W. Moore's collaboration.

Top Co-Authors

Avatar

Emi Kinameri

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Caroline Delandre

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

M. Rezaul Karim

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna Doumanis

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reiko Amikura

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge