Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keita Endo is active.

Publication


Featured researches published by Keita Endo.


Nature Neuroscience | 2012

Identification of a dopamine pathway that regulates sleep and arousal in Drosophila

Taro Ueno; Jun Tomita; Hiromu Tanimoto; Keita Endo; Kei Ito; Shoen Kume; Kazuhiko Kume

Sleep is required to maintain physiological functions, including memory, and is regulated by monoamines across species. Enhancement of dopamine signals by a mutation in the dopamine transporter (DAT) decreases sleep, but the underlying dopamine circuit responsible for this remains unknown. We found that the D1 dopamine receptor (DA1) in the dorsal fan-shaped body (dFSB) mediates the arousal effect of dopamine in Drosophila. The short sleep phenotype of the DAT mutant was completely rescued by an additional mutation in the DA1 (also known as DopR) gene, but expression of wild-type DA1 in the dFSB restored the short sleep phenotype. We found anatomical and physiological connections between dopamine neurons and the dFSB neuron. Finally, we used mosaic analysis with a repressive marker and found that a single dopamine neuron projecting to the FSB activated arousal. These results suggest that a local dopamine pathway regulates sleep.


Nature Neuroscience | 2007

Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages

Keita Endo; Tomoko Aoki; Yuka Yoda; Ken-ichi Kimura; Chihiro Hama

An essential feature of the organization and function of the vertebrate and insect olfactory systems is the generation of a variety of olfactory receptor neurons (ORNs) that have different specificities in regard to both odorant receptor expression and axonal targeting. Yet the underlying mechanisms that generate this neuronal diversity remain elusive. Here we demonstrate that the Notch signal is involved in the diversification of ORNs in Drosophila melanogaster. A systematic clonal analysis showed that a cluster of ORNs housed in each sensillum were differentiated into two classes, depending on the level of Notch activity in their sibling precursors. Notably, ORNs of different classes segregated their axonal projections into distinct domains in the antennal lobes. In addition, both the odorant receptor expression and the axonal targeting of ORNs were specified according to their Notch-mediated identities. Thus, Notch signaling contributes to the diversification of ORNs, thereby regulating multiple developmental events that establish the olfactory map in Drosophila.


Current Biology | 2013

Systematic Analysis of Neural Projections Reveals Clonal Composition of the Drosophila Brain

Masayoshi Ito; Naoki Masuda; Kazunori Shinomiya; Keita Endo; Kei Ito

BACKGROUND During development neurons are generated by sequential divisions of neural stem cells, or neuroblasts. In the insect brain progeny of certain stem cells form lineage-specific sets of projections that arborize in distinct brain regions, called clonal units. Though this raises the possibility that the entire neural network in the brain might be organized in a clone-dependent fashion, only a small portion of clones has been identified. RESULTS Using Drosophila melanogaster, we randomly labeled one of about 100 stem cells at the beginning of the larval stage, analyzed the projection patterns of their progeny in the adult, and identified 96 clonal units in the central part of the fly brain, the cerebrum. Neurons of all the clones arborize in distinct regions of the brain, though many clones feature heterogeneous groups of neurons in terms of their projection patterns and neurotransmitters. Arborizations of clones overlap preferentially to form several groups of closely associated clones. Fascicles and commissures were all made by unique sets of clones. Whereas well-investigated brain regions such as the mushroom body and central complex consist of relatively small numbers of clones and are specifically connected with a limited number of neuropils, seemingly disorganized neuropils surrounding them are composed by a much larger number of clones and have extensive specific connections with many other neuropils. CONCLUSIONS Our study showed that the insect brain is formed by a composition of cell-lineage-dependent modules. Clonal analysis reveals organized architecture even in those neuropils without obvious structural landmarks.


The Journal of Comparative Neurology | 2012

Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain.

Nobuaki Tanaka; Keita Endo; Kei Ito

The primary olfactory centers of both vertebrates and insects are characterized by glomerular structure. Each glomerulus receives sensory input from a specific type of olfactory sensory neurons, creating a topographic map of the odor quality. The primary olfactory center is also innervated by various types of neurons such as local neurons, output projection neurons (PNs), and centrifugal neurons from higher brain regions. Although recent studies have revealed how olfactory sensory input is conveyed to each glomerulus, it still remains unclear how the information is integrated and conveyed to other brain areas. By using the GAL4 enhancer‐trap system, we conducted a systematic mapping of the neurons associated with the primary olfactory center of Drosophila, the antennal lobe (AL). We identified in total 29 types of neurons, among which 13 are newly identified in the present study. Analyses of arborizations of these neurons in the AL revealed how glomeruli are linked with each other, how different PNs link these glomeruli with multiple secondary sites, and how these secondary sites are organized by the projections of the AL‐associated neurons. J. Comp. Neurol. 520:4067–4130, 2012.


Nature Neuroscience | 2012

Chromatin modification of Notch targets in olfactory receptor neuron diversification

Keita Endo; M. Rezaul Karim; Hiroaki Taniguchi; Alena Krejci; Emi Kinameri; Matthias Siebert; Kei Ito; Sarah Bray; Adrian W. Moore

Neuronal-class diversification is central during neurogenesis. This requirement is exemplified in the olfactory system, which utilizes a large array of olfactory receptor neuron (ORN) classes. We discovered an epigenetic mechanism in which neuron diversity is maximized via locus-specific chromatin modifications that generate context-dependent responses from a single, generally used intracellular signal. Each ORN in Drosophila acquires one of three basic identities defined by the compound outcome of three iterated Notch signaling events during neurogenesis. Hamlet, the Drosophila Evi1 and Prdm16 proto-oncogene homolog, modifies cellular responses to these iteratively used Notch signals in a context-dependent manner, and controls odorant receptor gene choice and ORN axon targeting specificity. In nascent ORNs, Hamlet erases the Notch state inherited from the parental cell, enabling a modified response in a subsequent round of Notch signaling. Hamlet directs locus-specific modifications of histone methylation and histone density and controls accessibility of the DNA-binding protein Suppressor of Hairless at the Notch target promoter.


Journal of Bioscience and Bioengineering | 2012

Phylogenetic diversity of microbial communities associated with the crude-oil, large-insoluble-particle and formation-water components of the reservoir fluid from a non-flooded high-temperature petroleum reservoir

Hajime Kobayashi; Keita Endo; Susumu Sakata; Daisuke Mayumi; Hideo Kawaguchi; Masayuki Ikarashi; Yoshihiro Miyagawa; Haruo Maeda; Kozo Sato

The diversity of microbial communities associated with non-water-flooded high-temperature reservoir of the Niibori oilfield was characterized. Analysis of saturated hydrocarbons revealed that n-alkanes in crude oil from the reservoir were selectively depleted, suggesting that crude oil might be mildly biodegraded in the reservoir. To examine if any specific microorganism(s) preferentially attached to the crude oil or the other components (large insoluble particles and formation water) of the reservoir fluid, 16S rRNA gene clone libraries were constructed from each component of the reservoir fluid. The clones in the archaeal libraries (414 clones in total) represented 16 phylotypes, many of which were closely related to methanogens. The bacterial libraries (700 clones in total) were composed of 49 phylotypes belonging to one of 16 phylum-level groupings, with Firmicutes containing the greatest diversity of the phylotypes. In the crude-oil- and large-insoluble-particle-associated communities, a Methanosaeta-related phylotype dominated the archaeal sequences, whereas hydrogenotrophic methanogens occupied a major portion of sequences in the library of the formation-water-associated community. The crude-oil associated bacterial community showed the largest diversity, containing 35 phylotypes, 16 of which were not detected in the other bacterial communities. Thus, although the populations associated with the reservoir-fluid components largely shared common phylogenetic context, a specific fraction of microbial species preferentially attached to the crude oil and insoluble particles.


Journal of Bioscience and Bioengineering | 2012

Analysis of methane production by microorganisms indigenous to a depleted oil reservoir for application in Microbial Enhanced Oil Recovery

Hajime Kobayashi; Hideo Kawaguchi; Keita Endo; Daisuke Mayumi; Susumu Sakata; Masayuki Ikarashi; Yoshihiro Miyagawa; Haruo Maeda; Kozo Sato

We examined methane production by microorganisms collected from a depleted oilfield. Our results indicated that microorganisms indigenous to the petroleum reservoir could effectively utilize yeast extract, suggesting that the indigenous microorganisms and proteinaceous nutrients could be recruitable for Microbially Enhanced Oil Recovery.


The Journal of Neuroscience | 2009

Differentially Expressed Drl and Drl-2 Play Opposing Roles in Wnt5 Signaling during Drosophila Olfactory System Development

Masao Sakurai; Tomoko Aoki; Shingo Yoshikawa; Linda A. Santschi; Hiroko Saito; Keita Endo; Kyoko Ishikawa; Ken-ichi Kimura; Kei Ito; John B. Thomas; Chihiro Hama

In Drosophila, odor information received by olfactory receptor neurons (ORNs) is processed by glomeruli, which are organized in a stereotypic manner in the antennal lobe (AL). This glomerular organization is regulated by Wnt5 signaling. In the embryonic CNS, Wnt5 signaling is transduced by the Drl receptor, a member of the Ryk family. During development of the olfactory system, however, it is antagonized by Drl. Here, we identify Drl-2 as a receptor mediating Wnt5 signaling. Drl is found in the neurites of brain cells in the AL and specific glia, whereas Drl-2 is predominantly found in subsets of growing ORN axons. A drl-2 mutation produces only mild deficits in glomerular patterning, but when it is combined with a drl mutation, the phenotype is exacerbated and more closely resembles the Wnt5 phenotype. Wnt5 overexpression in ORNs induces aberrant glomeruli positioning. This phenotype is ameliorated in the drl-2 mutant background, indicating that Drl-2 mediates Wnt5 signaling. In contrast, forced expression of Drl-2 in the glia of drl mutants rescues the glomerular phenotype caused by the loss of antagonistic Drl function. Therefore, Drl-2 can also antagonize Wnt5 signaling. Additionally, our genetic data suggest that Drl localized to developing glomeruli mediates Wnt5 signaling. Thus, these two members of the Ryk family are capable of carrying out a similar molecular function, but they can play opposing roles in Wnt5 signaling, depending on the type of cells in which they are expressed. These molecules work cooperatively to establish the olfactory circuitry in Drosophila.


Journal of Bioscience and Bioengineering | 2010

Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs

Hideo Kawaguchi; Takahiro Sakuma; Yuiko Nakata; Hajime Kobayashi; Keita Endo; Kozo Sato

To recover energy from carbon dioxide sequestered in geological reservoirs, the geochemical effects of acidic and substrate- and nutrient-limiting conditions on methane production by the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus were investigated in a simulated deep saline aquifer environment using formation water media retrieved from petroleum reservoirs.


bioRxiv | 2017

A lineage-related reciprocal inhibition circuitry for sensory-motor action selection

Benjamin Kottler; Vincenzo G. Fiore; Zoe N. Ludlow; Edgar Buhl; Gerald Vinatier; R.A. Faville; Danielle Diaper; Alan Stepto; Jonah Dearlove; Yoshitsugu Adachi; Sheena Brown; Chenghao Chen; Daniel A. Solomon; Katherine E. White; Dickon M. Humphrey; Sean M. Buchanan; Stephan J Sigrist; Keita Endo; Kei Ito; Benjamin L. de Bivort; Ralf Stanewsky; R. J. Dolan; Jean-René Martin; James J. L. Hodge; Nicholas J. Strausfeld; Frank Hirth

The insect central complex and vertebrate basal ganglia are forebrain centres involved in selection and maintenance of behavioural actions. However, little is known about the formation of the underlying circuits, or how they integrate sensory information for motor actions. Here, we show that paired embryonic neuroblasts generate central complex ring neurons that mediate sensory-motor transformation and action selection in Drosophila. Lineage analysis resolves four ring neuron subtypes, R1-R4, that form GABAergic inhibition circuitry among inhibitory sister cells. Genetic manipulations, together with functional imaging, demonstrate subtype-specific R neurons mediate the selection and maintenance of behavioural activity. A computational model substantiates genetic and behavioural observations suggesting that R neuron circuitry functions as salience detector using competitive inhibition to amplify, maintain or switch between activity states. The resultant gating mechanism translates facilitation, inhibition and disinhibition of behavioural activity as R neuron functions into selection of motor actions and their organisation into action sequences.

Collaboration


Dive into the Keita Endo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian W. Moore

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chihiro Hama

Kyoto Sangyo University

View shared research outputs
Top Co-Authors

Avatar

Daisuke Mayumi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Emi Kinameri

RIKEN Brain Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge