Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriana Canapa is active.

Publication


Featured researches published by Adriana Canapa.


Nature | 2013

The African coelacanth genome provides insights into tetrapod evolution.

Chris T. Amemiya; Jessica Alföldi; Alison P. Lee; Shaohua Fan; Hervé Philippe; Iain MacCallum; Ingo Braasch; Tereza Manousaki; Igor Schneider; Nicolas Rohner; Chris Organ; Domitille Chalopin; Jeramiah J. Smith; Mark Robinson; Rosemary A. Dorrington; Marco Gerdol; Bronwen Aken; Maria Assunta Biscotti; Marco Barucca; Denis Baurain; Aaron M. Berlin; Francesco Buonocore; Thorsten Burmester; Michael S. Campbell; Adriana Canapa; John P. Cannon; Alan Christoffels; Gianluca De Moro; Adrienne L. Edkins; Lin Fan

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.


Journal of Molecular Evolution | 2000

Molecular data from the 16S rRNA gene for the phylogeny of Pectinidae (Mollusca: Bivalvia).

Adriana Canapa; Marco Barucca; Annalisa Marinelli; Ettore Olmo

Abstract. The phylogenetic relationships among the species belonging to the family Pectinidae are still an issue of debate. The mitochondrial DNA sequences from the large ribosomal RNA gene may be of great value for systematic and phylogenetic studies within families. Partial sequences of the 16S rRNA gene were obtained for the scallop species Adamussium colbecki, Aequipecten opercularis, Chlamys glabra, C. islandica, C. varia, and Pecten jacobeus and compared with the published sequence of Pecten maximus. The present molecular data show that Chlamys are polyphyletic and do not support the assignment of these species to the two subfamilies Chlamydinae and Pectininae. Moreover, the minimal genetic distance between P. maximus and P. jacobeus suggests that they could belong to the same species.


Chromosome Research | 2002

A centromeric satellite DNA may be involved in heterochromatin compactness in gobiid fishes.

Adriana Canapa; Paola Nisi Cerioni; Marco Barucca; Ettore Olmo; Vincenzo Caputo

Centromere and telomere composition and organization were studied in various gobiid species exhibiting and not exhibiting chromosome polymorphisms involving Robertsonian rearrangements. In Gobius cobitis, we isolated an AT-rich centromeric DNA satellite, designated pCOB, and found that several sequences contain adenine stretches, various CA/TG dinucleotide steps, and a sequence 76% homologous to the yeast CDE III centromeric sequence. All of these traits are generally considered important for centromeric function, and the hypothesis has been advanced that some are involved in the control of DNA curvature and thus in the degree of centromeric chromatin compactness. Based on these features, and on the fact that they are found only in the species not exhibiting Robertsonian biarmed chromosomes, a role for pCOB in preventing centric fusions has been hypothesized. Our data also suggest that, as in other species, the formation of Robertsonian biarmed chromosomes is accompanied by the loss of telomeric sequences.


Journal of Molecular Evolution | 1996

Phylogenetic analysis of Veneridae (Bivalvia): Comparison of molecular and palaeontological data

Adriana Canapa; Isolina Marota; Franco Rollo; Ettore Olmo

An approximately 400-by-long portion of the 16s rRNA gene sequence has been determined for the venerid clamsChamelea gallina (Chioninae),Dosinia lupinus (Dosiniinae),Pitar rudis,Callista chione (Pitarinae),Tapes decussatus,T. philippinarum,Venerupis (=Paphia)aurea (Tapetinae), andVenus verrucosa (Venerinae). Neighbor-joining and maximum parsimony trees support the results of traditional classification methods at the subfamily level but do not support the concept of a genusTapes. The transversion divergence rate estimated on the basis of the palaeontological record for theC. gallina/V. verrucosa separation and for the Pitarinae is very close (0.14–0.16% per Myr, respectively) to that of ungulates and cetaceans, while the Tapetinae exhibit a much higher (0.36% per Myr) rate.


Journal of Experimental Zoology | 2014

A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths

Pierre Boudinot; Jun Zou; Tatsuya Ota; Francesco Buonocore; Giuseppe Scapigliati; Adriana Canapa; John P. Cannon; Gary W. Litman; John D. Hansen

The recent availability of both robust transcriptome and genome resources for coelacanth (Latimeria chalumnae) has led to unique discoveries for coelacanth immunity such as the lack of IgM, a central component of adaptive immunity. This study was designed to more precisely address the origins and evolution of gene families involved in the initial recognition and response to microbial pathogens, which effect innate immunity. Several multigene families involved in innate immunity are addressed, including: Toll-like receptors (TLRs), retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain and leucine-rich repeat containing proteins (NLRs), diverse immunoglobulin domain-containing proteins (DICP) and modular domain immune-type receptors (MDIRs). Our analyses also include the tripartite motif-containing proteins (TRIM), which are involved in pathogen recognition as well as the positive regulation of antiviral immunity. Finally, this study addressed some of the downstream effectors of the antimicrobial response including IL-1 family members, type I and II interferons (IFN) and IFN-stimulated effectors (ISGs). Collectively, the genes and gene families in coelacanth that effect innate immune functions share characteristics both in content, structure and arrangement with those found in tetrapods but not in teleosts. The findings support the sister group relationship of coelacanth fish with tetrapods.


PLOS ONE | 2013

Characterization of sex determination and sex differentiation genes in Latimeria.

Mariko Forconi; Adriana Canapa; Marco Barucca; Maria Assunta Biscotti; Teresa Capriglione; Francesco Buonocore; Anna Maria Fausto; Daisy Monica Makapedua; Alberto Pallavicini; Marco Gerdol; Gianluca De Moro; Giuseppe Scapigliati; Ettore Olmo; Manfred Schartl

Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique “living fossils”, could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development.


Gene | 2000

A satellite DNA containing CENP-B box-like motifs is present in the Antarctic scallop Adamussium colbecki

Adriana Canapa; Marco Barucca; Paola Nisi Cerioni; Ettore Olmo

The DNA of the Antarctic scallop Adamussium colbecki was found to contain a highly repeated sequence identifiable upon restriction with endonuclease BglII. The monomeric unit - denominated pACS (about 170bp long) - was cloned. Southern blot hybridization yielded a ladder-like banding pattern, indicating that the repeated elements are tandemly arranged in the genome and therefore represent a sequence of satellite DNA. Sequence analysis of five different clones revealed the presence of various subfamilies, some of which showed a high degree of divergence. In each clone, regions homologous to the mammalian CENP-B box were observed. A region homologous to the CDEIII centromeric sequence of yeast was also found in one of the clones. These observations suggest a relationship of the pACS family to the centromeric area in A. colbecki.


American Journal of Physical Anthropology | 2000

Analysis of bacterial DNA in skin and muscle of the Tyrolean iceman offers new insight into the mummification process.

Franco Rollo; Stefania Luciani; Adriana Canapa; Isolina Marota

About 80 sequences (16s ribosomal RNA gene) of bacterial DNA in samples of skin and muscle taken directly from the Tyrolean iceman (3350-3100 years B.C.) or recovered during the 1992 archaeological expedition at the Alpine site were analyzed to obtain clues to the natural mummification process that allowed the corpse of the Neolithic shepherd/hunter to be preserved for more than 5,000 years. The investigation was made more complex by the fact that the surface of the mummy had been swabbed with phenol soon after the discovery (September 19, 1991). Our results show that no trace of microbial DNA is left on the actual surface of the body, while the untreated skin still bears the remains of large numbers of bacteria belonging to the genera Sphingomonas, Afipia, Curtobacterium, Microbacterium, Agromyces, and others. Compared to the untreated skin, the icemans muscle is also very rich in bacterial DNA. However, this DNA comes, with few exceptions, from the species Clostridium algidicarnis. The sharp difference in the bacterial DNA composition of skin and muscle suggests that the remains of the original cadaveric microflora of the latter have not disappeared during the icemans taphonomic history. On the other hand, the massive presence of C. algidicarnis, a cold-adapted sporigenous, the DNA of which was previously (Ubaldi et al. [1998] Am. J. Phys. Anthropol. 107:285-295) found in the soft tissue of a naturally desiccated Andean mummy, indicates that the hypothesis that the icemans corpse underwent rapid dehydration by the effect of a warm wind (föhn) is no longer plausible. The results best fit with the hypothesis (Bereuter et al. [1997] Chem. Eur. J. 7:1032-1038) that the body was first covered by snow and ice, and then underwent thawing and, finally, desiccation.


Chromosome Research | 2015

Transcription of tandemly repetitive DNA: functional roles.

Maria Assunta Biscotti; Adriana Canapa; Mariko Forconi; Ettore Olmo; Marco Barucca

A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.


Journal of Molecular Evolution | 1999

The small-subunit rRNA gene sequences of Venerids and the phylogeny of Bivalvia

Adriana Canapa; Isolina Marota; Franco Rollo; Ettore Olmo

Abstract. The complete nucleotide sequence of the 18S subunit of ribosomal DNA (rDNA) was determined for the venerid clams Callista chione (Pitarinae) and Venus verrucosa (Venerinae). Comparison of the new sequences with the published sequences of 1 annelid, 2 gastropods, 2 polyplacophorans, and 19 bivalves showed that when the annelids are used as outgroup the gastropods diverge from the bivalves, which form a cluster including the polyplacophorans. When the gastropods alone were compared with the bivalves, the latter split in two groups corresponding to the two subclasses of Heterodonta and Pteriomorpha. The former include two taxa that diverged early, Galeomma and Tridacna, while the Veneridae and Mactridae form two sister groups. In contrast to previous reports and in line with morphological data, the Ostreidae are included in the Pteriomorphia and form a monophyletic group.

Collaboration


Dive into the Adriana Canapa's collaboration.

Top Co-Authors

Avatar

Marco Barucca

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Ettore Olmo

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariko Forconi

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa Capriglione

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaetano Odierna

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge