Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Assunta Biscotti is active.

Publication


Featured researches published by Maria Assunta Biscotti.


Nature | 2013

The African coelacanth genome provides insights into tetrapod evolution.

Chris T. Amemiya; Jessica Alföldi; Alison P. Lee; Shaohua Fan; Hervé Philippe; Iain MacCallum; Ingo Braasch; Tereza Manousaki; Igor Schneider; Nicolas Rohner; Chris Organ; Domitille Chalopin; Jeramiah J. Smith; Mark Robinson; Rosemary A. Dorrington; Marco Gerdol; Bronwen Aken; Maria Assunta Biscotti; Marco Barucca; Denis Baurain; Aaron M. Berlin; Francesco Buonocore; Thorsten Burmester; Michael S. Campbell; Adriana Canapa; John P. Cannon; Alan Christoffels; Gianluca De Moro; Adrienne L. Edkins; Lin Fan

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.


Chromosome Research | 2015

Repetitive DNA in eukaryotic genomes.

Maria Assunta Biscotti; Ettore Olmo; J. S. Heslop-Harrison

Repetitive DNA—sequence motifs repeated hundreds or thousands of times in the genome—makes up the major proportion of all the nuclear DNA in most eukaryotic genomes. However, the significance of repetitive DNA in the genome is not completely understood, and it has been considered to have both structural and functional roles, or perhaps even no essential role. High-throughput DNA sequencing reveals huge numbers of repetitive sequences. Most bioinformatic studies focus on low-copy DNA including genes, and hence, the analyses collapse repeats in assemblies presenting only one or a few copies, often masking out and ignoring them in both DNA and RNA read data. Chromosomal studies are proving vital to examine the distribution and evolution of sequences because of the challenges of analysis of sequence data. Many questions are open about the origin, evolutionary mode and functions that repetitive sequences might have in the genome. Some, the satellite DNAs, are present in long arrays of similar motifs at a small number of sites, while others, particularly the transposable elements (DNA transposons and retrotranposons), are dispersed over regions of the genome; in both cases, sequence motifs may be located at relatively specific chromosome domains such as centromeres or subtelomeric regions. Here, we overview a range of works involving detailed characterization of the nature of all types of repetitive sequences, in particular their organization, abundance, chromosome localization, variation in sequence within and between chromosomes, and, importantly, the investigation of their transcription or expression activity. Comparison of the nature and locations of sequences between more, and less, related species is providing extensive information about their evolution and amplification. Some repetitive sequences are extremely well conserved between species, while others are among the most variable, defining differences between even closely relative species. These data suggest contrasting modes of evolution of repetitive DNA of different types, including selfish sequences that propagate themselves and may even be transferred horizontally between species rather than by descent, through to sequences that have a tendency to amplification because of their sequence motifs, to those that have structural significance because of their bulk rather than precise sequence. Functional consequences of repeats include generation of variability by movement and insertion in the genome (giving useful genetic markers), the definition of centromeres, expression under stress conditions and regulation of gene expression via RNA moieties. Molecular cytogenetics and bioinformatic studies in a comparative context are now enabling understanding of the nature and behaviour of this major genomic component.


PLOS ONE | 2013

Characterization of sex determination and sex differentiation genes in Latimeria.

Mariko Forconi; Adriana Canapa; Marco Barucca; Maria Assunta Biscotti; Teresa Capriglione; Francesco Buonocore; Anna Maria Fausto; Daisy Monica Makapedua; Alberto Pallavicini; Marco Gerdol; Gianluca De Moro; Giuseppe Scapigliati; Ettore Olmo; Manfred Schartl

Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique “living fossils”, could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development.


Chromosome Research | 2015

Transcription of tandemly repetitive DNA: functional roles.

Maria Assunta Biscotti; Adriana Canapa; Mariko Forconi; Ettore Olmo; Marco Barucca

A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.


Scientific Reports | 2016

The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land.

Maria Assunta Biscotti; Marco Gerdol; Adriana Canapa; Mariko Forconi; Ettore Olmo; Alberto Pallavicini; Marco Barucca; Manfred Schartl

Lungfish and coelacanths are the only living sarcopterygian fish. The phylogenetic relationship of lungfish to the last common ancestor of tetrapods and their close morphological similarity to their fossil ancestors make this species uniquely interesting. However their genome size, the largest among vertebrates, is hampering the generation of a whole genome sequence. To provide a partial solution to the problem, a high-coverage lungfish reference transcriptome was generated and assembled. The present findings indicate that lungfish, not coelacanths, are the closest relatives to land-adapted vertebrates. Whereas protein-coding genes evolve at a very slow rate, possibly reflecting a “living fossil” status, transposable elements appear to be active and show high diversity, suggesting a role for them in the remarkable expansion of the lungfish genome. Analyses of single genes and gene families documented changes connected to the water to land transition and demonstrated the value of the lungfish reference transcriptome for comparative studies of vertebrate evolution.


Cytogenetic and Genome Research | 2015

Transposons, Genome Size, and Evolutionary Insights in Animals

Adriana Canapa; Marco Barucca; Maria Assunta Biscotti; Mariko Forconi; Ettore Olmo

The relationship between genome size and the percentage of transposons in 161 animal species evidenced that variations in genome size are linked to the amplification or the contraction of transposable elements. The activity of transposable elements could represent a response to environmental stressors. Indeed, although with different trends in protostomes and deuterostomes, comprehensive changes in genome size were recorded in concomitance with particular periods of evolutionary history or adaptations to specific environments. During evolution, genome size and the presence of transposable elements have influenced structural and functional parameters of genomes and cells. Changes of these parameters have had an impact on morphological and functional characteristics of the organism on which natural selection directly acts. Therefore, the current situation represents a balance between insertion and amplification of transposons and the mechanisms responsible for their deletion or for decreasing their activity. Among the latter, methylation and the silencing action of small RNAs likely represent the most frequent mechanisms.


Italian Journal of Zoology | 2009

Description of Pseudocirrhipathes (Cnidaria: Anthozoa: Hexacorallia: Antipathidae), a new genus of whip black corals from the Indo‐Pacific

Marzia Bo; Marco Barucca; Maria Assunta Biscotti; Adriana Canapa; H. F. N. Lapian; Ettore Olmo; Giorgio Bavestrello

The new species, Pseudocirrhipathes mapia, is herein described from specimens coming from the coral reefs of the Bunaken Marine Park (North Sulawesi, Indonesia). The species is characterized by an unbranched thin corallum up to 1 m high (maximum basal thickness 4 mm), with large polyps arranged irregularly on one side of the stem, and by tentacles that are not completely contractile. The skeleton shows an array of spine morphologies along the stem, although most are typically verticillated in the apical section and highly tuberculated in the central portion. The study of its cnidome revealed the presence of an extremely long basitrich isorhiza. The morphological analysis has been coupled with a molecular study of the rDNA ITS sequences confirming the existence of the new genus Pseudocirrhipathes and its inclusion, together with the genus Allopathes, in a separate clade related to the Antipathidae.


Genesis | 2014

Hox and ParaHox genes: A review on molluscs

Maria Assunta Biscotti; Adriana Canapa; Mariko Forconi; Marco Barucca

Hox and ParaHox genes are involved in patterning the anterior‐posterior body axis in metazoans during embryo development. Body plan evolution and diversification are affected by variations in the number and sequence of Hox and ParaHox genes, as well as by their expression patterns. For this reason Hox and ParaHox gene investigation in the phylum Mollusca is of great interest, as this is one of the most important taxa of protostomes, characterized by a high morphological diversity. The comparison of the works reviewed here indicates that species of molluscs, belonging to different classes, share a similar composition of Hox and ParaHox genes. Therefore evidence suggests that the wide morphological diversity of this taxon could be ascribed to differences in Hox gene interactions and expressions and changes in the Hox downstream genes rather than to Hox cluster composition. Moreover the data available on Hox and ParaHox genes in molluscs compared with those of other Lophotrochozoa shed light on the complex and controversial evolutionary histories that these genes have undergone within protostomes. genesis 52:935–945, 2014.


Journal of Experimental Zoology | 2012

Composition and phylogenetic analysis of vitellogenin coding sequences in the Indonesian coelacanth Latimeria menadoensis.

Adriana Canapa; Ettore Olmo; Mariko Forconi; Alberto Pallavicini; Monica Daisy Makapedua; Maria Assunta Biscotti; Marco Barucca

The coelacanth Latimeria menadoensis, a living fossil, occupies a key phylogenetic position to explore the changes that have affected the genomes of the aquatic vertebrates that colonized dry land. This is the first study to isolate and analyze L. menadoensis mRNA. Three different vitellogenin transcripts were identified and their inferred amino acid sequences compared to those of other known vertebrates. The phylogenetic data suggest that the evolutionary history of this gene family in coelacanths was characterized by a different duplication event than those which occurred in teleosts, amniotes, and amphibia. Comparison of the three sequences highlighted differences in functional sites. Moreover, despite the presence of conserved sites compared with the other oviparous vertebrates, some sites were seen to have changed, others to be similar only to those of teleosts, and others still to resemble only to those of tetrapods.


Molecular Genetics and Genomics | 2015

A novel satellite DNA isolated in Pecten jacobaeus shows high sequence similarity among molluscs

Agnese Petraccioli; Gaetano Odierna; Teresa Capriglione; Marco Barucca; Mariko Forconi; Ettore Olmo; Maria Assunta Biscotti

The aim of this work is to investigate the sequence conservation and the evolution of repeated DNA in related species. Satellite DNA is a component of eukaryotic genomes and is made up of tandemly repeated sequences. These sequences are affected by high rates of mutation that lead to the occurrence of species-specific satellite DNAs, which are different in terms of both quantity and quality. In this work, a novel repetitive DNA family, named PjHhaI sat, is described in Pecten jacobaeus. The quantitative analyses revealed a different abundance of this element in the molluscan species investigated in agreement with the “library hypothesis” even if, in this case, at a high taxonomic level. In addition, the qualitative analysis demonstrated an astonishing sequence conservation not only among scallops but also in six other molluscan species belonging to three classes. These findings suggest that the PjHhaI sat may be considered as the most ancients of DNA described so far, which remained “frozen” during molluscan evolution. The widespread distribution of this sat DNA in molluscs as well as its long evolutionary preservation open up questions on the functional role of this element. A future challenge might be the identification of proteins or molecules which interact with the PjHhaI sat.

Collaboration


Dive into the Maria Assunta Biscotti's collaboration.

Top Co-Authors

Avatar

Marco Barucca

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Adriana Canapa

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Ettore Olmo

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Mariko Forconi

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa Capriglione

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge