Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriana Yndart is active.

Publication


Featured researches published by Adriana Yndart.


Neurochemistry International | 2012

HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: Role in HIV associated neurocognitive disorder

Pichili Vijaya Bhaskar Reddy; Nimisha Gandhi; Thangavel Samikkannu; Zainulabedin M. Saiyed; Marisela Agudelo; Adriana Yndart; Pradnya Khatavkar; Madhavan Nair

HIV infection affects the central nervous system resulting in HIV associated neurocognitive disorder (HAND), which is characterized by depression, behavioral and motor dysfunctions. The HIV-1 viral envelope protein gp120 is known to induce the release of neurotoxic factors which lead to apoptotic cell death. Although the exact mechanisms involved in HIV-1 gp120-induced neurotoxicity are not completely understood, oxidative stress is suggested to play a vital role in the neuropathogenesis of HAND. Astrocytes represent major population of the non-neuronal cell type in the brain and play a critical role in the neuropathogenesis of HAND. Increased oxidative stress is known to induce nuclear factor erythroid derived 2-related factor 2 (Nrf2), a basic leucine zipper transcription factor which is known to regulate the antioxidant defensive mechanism. However, the role of Nrf2 in HAND has not been elucidated. We report that gp120 significantly upregulates Nrf2 in human astrocytes and is associated with stimulation of key antioxidant defensive enzymes Hemoxygenase (HO-1) and NAD(P)H dehydrogenase quinone1 (Nqo1). Pretreatment of the astrocytes with antioxidants or a specific calcium chelator BAPTA-AM, significantly blocked the upregulation of Nrf2, HO-1 and Nqo1. These results suggest a possible role of the intracellular calcium and oxidative stress in Nrf2 mediated antioxidant defense mechanism, which may have protective role in promoting cell survival.


PLOS ONE | 2013

Human synaptic plasticity gene expression profile and dendritic spine density changes in HIV-infected human CNS cells: role in HIV-associated neurocognitive disorders (HAND).

Venkata Subba Rao Atluri; Sudheesh Pilakka Kanthikeel; Pichili Vijaya Bhaskar Reddy; Adriana Yndart; Madhavan Nair

HIV-associated neurocognitive disorders (HAND) is characterized by development of cognitive, behavioral and motor abnormalities, and occur in approximately 50% of HIV infected individuals. Our current understanding of HAND emanates mainly from HIV-1 subtype B (clade B), which is prevalent in USA and Western countries. However very little information is available on neuropathogenesis of HIV-1 subtype C (clade C) that exists in Sub-Saharan Africa and Asia. Therefore, studies to identify specific neuropathogenic mechanisms associated with HAND are worth pursuing to dissect the mechanisms underlying this modulation and to prevent HAND particularly in clade B infection. In this study, we have investigated 84 key human synaptic plasticity genes differential expression profile in clade B and clade C infected primary human astrocytes by using RT2 Profile PCR Array human Synaptic Plasticity kit. Among these, 31 and 21 synaptic genes were significantly (≥3 fold) down-regulated and 5 genes were significantly (≥3 fold) up-regulated in clade B and clade C infected cells, respectively compared to the uninfected control astrocytes. In flow-cytometry analysis, down-regulation of postsynaptic density and dendrite spine morphology regulatory proteins (ARC, NMDAR1 and GRM1) was confirmed in both clade B and C infected primary human astrocytes and SK-N-MC neuroblastoma cells. Further, spine density and dendrite morphology changes by confocal microscopic analysis indicates significantly decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC neuroblastoma cells compared to uninfected and clade C infected cells. We have also observed that, in clade B infected astrocytes, induction of apoptosis was significantly higher than in the clade C infected astrocytes. In conclusion, this study suggests that down-regulation of synaptic plasticity genes, decreased dendritic spine density and induction of apoptosis in astrocytes may contribute to the severe neuropathogenesis in clade B infection.


Scientific Reports | 2016

Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers

Ajeet Kaushik; Rahul Dev Jayant; Roozbeh Nikkhah-Moshaie; Vinay Bhardwaj; Upal Roy; Zaohua Huang; Ariel Ruiz; Adriana Yndart; Venkata Subba Rao Atluri; Nazira El-Hage; Kamel Khalili; Madhavan Nair

Least component-based delivery of drug-tagged-nanocarriers across blood-brain-barriers (BBB) will allow site-specific and on-demand release of therapeutics to prevent CNS diseases. We developed a non-invasive magnetically guided delivery of magneto-electric nanocarriers (MENCs), ~20 nm, 10 mg/kg, across BBB in C57Bl/J mice. Delivered MENCs were uniformly distributed inside the brain, and were non-toxic to brain and other major organs, such as kidney, lung, liver, and spleen, and did not affect hepatic, kidney and neurobehavioral functioning.


Neurochemistry International | 2011

HIV-1 Tat upregulates expression of histone deacetylase-2 (HDAC2) in human neurons: Implication for HIV-associated neurocognitive disorder (HAND)

Zainulabedin M. Saiyed; Nimisha Gandhi; Marisela Agudelo; Jessica Napuri; Thangavel Samikkannu; Pichili Vijaya Bhaskar Reddy; Pradnya Khatavkar; Adriana Yndart; Shailendra K. Saxena; Madhavan Nair

Histone deacetylases (HDACs) play a pivotal role in epigenetic regulation of transcription and homeostasis of protein acetylation in histones and other proteins involved in chromatin remodeling. Histone hypoacetylation and transcriptional dysfunction have been shown to be associated with a variety of neurodegenerative diseases. More recently, neuron specific overexpression of HDAC2 has been shown to modulate synaptic plasticity and learning behavior in mice. However, the role of HDAC2 in development of HIV-associated neurocognitive disorders (HAND) is not reported. Herein we report that HIV-1 Tat protein upregulate HDAC2 expression in neuronal cells leading to transcriptional repression of genes involved in synaptic plasticity and neuronal function thereby contributing to the progression of HAND. Our results indicate upregulation of HDAC2 by Tat treatment in dose and time dependant manner by human neuroblastoma SK-N-MC cells and primary human neurons. Further, HDAC2 overexpression was associated with concomitant downregulation in CREB and CaMKIIa genes that are known to regulate neuronal activity. These observed effects were completely blocked by HDAC2 inhibition. These results for the first time suggest the possible role of HDAC2 in development of HAND. Therefore, use of HDAC2 specific inhibitor in combination with HAART may be of therapeutic value in treatment of neurocognitive disorders observed in HIV-1 infected individuals.


International Journal of Nanomedicine | 2015

electrochemical sensing method for point-of-care cortisol detection in human immunodeficiency virus-infected patients

Ajeet Kaushik; Adriana Yndart; Rahul Dev Jayant; Vidya Sagar; Venkata Subba Rao Atluri; Shekhar Bhansali; Madhavan Nair

A novel electrochemical sensing method was devised for the first time to detect plasma cortisol, a potential psychological stress biomarker, in human immunodeficiency virus (HIV)-positive subjects. A miniaturized potentiostat (reconfigured LMP91000 chip) interfaced with a microfluidic manifold containing a cortisol immunosensor was employed to demonstrate electrochemical cortisol sensing. This fully integrated and optimized electrochemical sensing device exhibited a wide cortisol-detection range from 10 pg/mL to 500 ng/mL, a low detection limit of 10 pg/mL, and sensitivity of 5.8 μA (pg mL)−1, with a regression coefficient of 0.995. This cortisol-selective sensing system was employed to estimate plasma cortisol in ten samples from HIV patients. The electrochemical cortisol-sensing performance was validated using an enzyme-linked immunosorbent assay technique. The results obtained using both methodologies were comparable within 2%–5% variation. The information related to psychological stress of HIV patients can be correlated with disease-progression parameters to optimize diagnosis, therapeutic, and personalized health monitoring.


PLOS ONE | 2014

β-Amyloid1-42, HIV-1Ba-L (clade B) infection and drugs of abuse induced degeneration in human neuronal cells and protective effects of ashwagandha (Withania somnifera) and its constituent Withanolide A.

Kesava Rao Venkata Kurapati; Thangavel Samikkannu; Venkata Subba Rao Atluri; Elena M. Kaftanovskaya; Adriana Yndart; Madhavan Nair

Alzheimers disease (AD) is characterized by progressive dysfunction of memory and higher cognitive functions with abnormal accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles throughout cortical and limbic brain regions. Withania somnifera (WS) also known as ‘ashwagandha’ (ASH) is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer. However, there is paucity of data on potential neuroprotective effects of ASH against β-Amyloid (1–42) (Aβ) induced neuropathogenesis. In the present study, we have tested the neuroprotective effects of Methanol: Chloroform (3:1) extract of ASH and its constituent Withanolide A (WA) against Aβ induced toxicity, HIV-1Ba-L (clade B) infection and the effects of drugs of abuse using a human neuronal SK-N-MC cell line. Aβ when tested individually, induced cytotoxic effects in SK-N-MC cells as shown by increased trypan blue stained cells. However, when ASH was added to Aβ treated cells the toxic effects were neutralized. This observation was supported by cellular localization of Aβ, MTT formazan exocytosis, and the levels of acetylcholinesterase activity, confirming the chemopreventive or protective effects of ASH against Aβ induced toxicity. Further, the levels of MAP2 were significantly increased in cells infected with HIV-1Ba-L (clade B) as well as in cells treated with Cocaine (COC) and Methamphetamine (METH) compared with control cells. In ASH treated cells the MAP2 levels were significantly less compared to controls. Similar results were observed in combination experiments. Also, WA, a purified constituent of ASH, showed same pattern using MTT assay as a parameter. These results suggests that neuroprotective properties of ASH observed in the present study may provide some explanation for the ethnopharmacological uses of ASH in traditional medicine for cognitive and other HIV associated neurodegenerative disorders and further ASH could be a potential novel drug to reduce the brain amyloid burden and/or improve the HIV-1 associated neurocognitive impairments


Drug and Alcohol Dependence | 2013

Differential expression and functional role of cannabinoid genes in alcohol users

Marisela Agudelo; Adriana Yndart; Marisol Morrison; Gloria Figueroa; Karla Muñoz; Thangavel Samikkannu; Madhavan Nair

BACKGROUND Genetic factors account for about fifty percent of the risk for alcoholism and alcohol dependence (AD) has been reported to be influenced by cannabinoid receptors (CBRs) and the endocannabinoid system (ECS). Previous studies have focused on cannabinoids and alcohol-related effects in the CNS; however, the role CBRs play on alcohol effects in the immune system has not been elucidated yet. Since alcohol can affect immune responses and have detrimental effects on immune cells such as dendritic cells (DCs), we hypothesize that alcohol can exert its effects on DCs by modulating changes in CBRs, which in turn can regulate important DC functions such as cytokine production. METHODS Therefore, we studied the expression of CNR1 and CNR2, and the novel cannabinoid G protein-coupled receptor (GPCR) 55 (GPR55) in human monocyte-derived dendritic cells (MDDCs) from alcohol users. CNR1, CNR2, and GPR55 genes were measured by qRT-PCR and protein by flow cytometry. MDDCs from alcohol users show significantly higher levels of CNR2 and GPR55 compared to MDDCs from non-users. These findings were further confirmed using MDDCs treated with alcohol. Inflammatory cytokines were measured in EtOH-treated and non-treated cells by antibody array. RESULTS Functional effects of CBRs on MDDCs were shown by CB2 and GPR55 siRNA transfection. Transfected EtOH-treated cells showed significantly higher levels of proinflammatory cytokine production as measured by IL-1β expression. Our results provide insights into alcohol mechanisms of DC regulation and show, for the first time, that alcohol is inducing CNR2 and GPR55 in human DCs.


International Journal of Nanomedicine | 2015

Preparation and characterization of anti-HIV nanodrug targeted to microfold cell of gut-associated lymphoid tissue

Upal Roy; Hong Ding; Sudheesh Pilakka-Kanthikeel; Andrea Raymond; Venkata Subba Rao Atluri; Adriana Yndart; Elena M. Kaftanovskaya; Elena V. Batrakova; Marisela Agudelo; Madhavan Nair

The human immunodeficiency virus 1 (HIV-1) still remains one of the leading life-threatening diseases in the world. The introduction of highly active antiretroviral therapy has significantly reduced disease morbidity and mortality. However, most of the drugs have variable penetrance into viral reservoir sites, including gut-associated lymphoid tissue (GALT). Being the largest lymphoid organ, GALT plays a key role in early HIV infection and host–pathogen interaction. Many different treatment options have been proposed to eradicate the virus from GALT. However, it becomes difficult to deliver traditional drugs to the GALT because of its complex physiology. In this regard, we developed a polymer-based Pluronic nanocarrier containing anti-HIV drug called efavirenz (EFV) targeting Microfold cells (M-cells) in the GALT. M-cells are specialized epithelial cells that are predominantly present in the GALT. In this work, we have exploited this paracellular transport property of M-cells for targeted delivery of Pluronic nanocarrier tagged EFV, bioconjugated with anti-M-cell-specific antibodies to the GALT (nanodrug). Preliminary characterization showed that the nanodrug (EFV-F12-COOH) is of 140 nm size with 0.3 polydispersion index, and the zeta potential of the particles was −19.38±2.2 mV. Further, drug dissolution study has shown a significantly improved sustained release over free drugs. Binding potential of nanodrug with M-cell was also confirmed with fluorescence microscopy and in vitro uptake and release studies. The anti-HIV activity of the nanodrug was also significantly higher compared to that of free drug. This novel formulation was able to show sustained release of EFV and inhibit the HIV-1 infection in the GALT compared to the free drug. The present study has potential for our in vivo targeted nanodrug delivery system by combining traditional enteric-coated capsule technique via oral administration.


Scientific Reports | 2017

Investigation of ac-magnetic field stimulated nanoelectroporation of magneto-electric nano-drug-carrier inside CNS cells

Ajeet Kaushik; Roozbeh Nikkhah-Moshaie; Raju Sinha; Vinay Bhardwaj; Venkata Subba Rao Atluri; Rahul Dev Jayant; Adriana Yndart; Babak Kateb; Nezih Pala; Madhavan Nair

In this research, we demonstrate cell uptake of magneto-electric nanoparticles (MENPs) through nanoelectroporation (NEP) using alternating current (ac)-magnetic field stimulation. Uptake of MENPs was confirmed using focused-ion-beam assisted transmission electron microscopy (FIB-TEM) and validated by a numerical simulation model. The NEP was performed in microglial (MG) brain cells, which are highly sensitive for neuro-viral infection and were selected as target for nano-neuro-therapeutics. When the ac-magnetic field optimized (60 Oe at 1 kHz), MENPs were taken up by MG cells without affecting cell health (viability > 92%). FIB-TEM analysis of porated MG cells confirmed the non-agglomerated distribution of MENPs inside the cell and no loss of their elemental and crystalline characteristics. The presented NEP method can be adopted as a part of future nanotherapeutics and nanoneurosurgery strategies where a high uptake of a nanomedicine is required for effective and timely treatment of brain diseases.


Nanoscale | 2017

Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain

Asahi Tomitaka; Hamed Arami; Andrea Raymond; Adriana Yndart; Ajeet Kaushik; Rahul Dev Jayant; Yasushi Takemura; Yong Cai; Michal Toborek; Madhavan Nair

Magneto-plasmonic nanoparticles are one of the emerging multi-functional materials in the field of nanomedicine. Their potential for targeting and multi-modal imaging is highly attractive. In this study, magnetic core/gold shell (MNP@Au) magneto-plasmonic nanoparticles were synthesized by citrate reduction of Au ions on magnetic nanoparticle seeds. Hydrodynamic size and optical properties of magneto-plasmonic nanoparticles synthesized with the variation of Au ions and reducing agent concentrations were evaluated. The synthesized magneto-plasmonic nanoparticles exhibited superparamagnetic properties, and their magnetic properties contributed to the concentration-dependent contrast in magnetic resonance imaging (MRI). The imaging contrast from the gold shell part of the magneto-plasmonic nanoparticles was also confirmed by X-ray computed tomography (CT). The transmigration study of the magneto-plasmonic nanoparticles using an in vitro blood-brain barrier (BBB) model proved enhanced transmigration efficiency without disrupting the integrity of the BBB, and showed potential to be used for brain diseases and neurological disorders.

Collaboration


Dive into the Adriana Yndart's collaboration.

Top Co-Authors

Avatar

Madhavan Nair

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Venkata Subba Rao Atluri

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Marisela Agudelo

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Ajeet Kaushik

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Rahul Dev Jayant

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Thangavel Samikkannu

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Raymond

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Gloria Figueroa

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Karla Muñoz

Florida International University

View shared research outputs
Researchain Logo
Decentralizing Knowledge