Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Raymond is active.

Publication


Featured researches published by Andrea Raymond.


Journal of NeuroVirology | 2016

Microglia-derived HIV Nef+ exosome impairment of the blood–brain barrier is treatable by nanomedicine-based delivery of Nef peptides

Andrea Raymond; Diaz P; Chevelon S; Marisela Agudelo; Adriana Yndart-Arias; Hong Ding; Ajeet Kaushik; Rahul Dev Jayant; Roozbeh Nikkhah-Moshaie; Upal Roy; Sudheesh Pilakka-Kanthikeel; Madhavan Nair

The negative factor (Nef) of human immunodeficiency virus (HIV) is an accessory protein that is thought to be integral to HIV-associated immune- and neuroimmune pathogenesis. Here, we show that nef-transfected microglia-released Nef+ exosome (exNef) disrupts the apical blood–brain barrier (BBB) and that only nef-transfected microglia release Nef in exosomes. nef–gfp-transduced neurons and astrocytes release exosomes but did not release exNef in the extracellular space. Apical administration of exNef derived from nef-transfected 293T cells reduced transendothelial electrical resistance (TEER) and increased permeability of the BBB. Microglia-derived exNef applied to either the apical/basal BBB significantly reduced expression of the tight junction protein, ZO-1, suggesting a mechanism of exNef-mediated neuropathogenesis. Microglia exposed to exNef release elevated levels of Toll-like receptor-induced cytokines and chemokines IL-12, IL-8, IL-6, RANTES, and IL-17A. Magnetic nanoparticle delivery of Nef peptides containing the Nef myrisolation site across an in vitro BBB ultimately reduced nef-transfected microglia release of Nef exosomes and prevented the loss of BBB integrity and permeability as measured by TEER and dextran-FITC transport studies, respectively. Overall, we show that exNef is released from nef–gfp-transfected microglia; exNef disrupts integrity and permeability, and tight junctions of the BBB, and induces microglial cytokine/chemokine secretion. These exNef-mediated effects were significantly restricted by Nef peptides. Taken together, this study provides preliminary evidence of the role of exNef in HIV neuroimmune pathogenesis and the feasibility of a nanomedicine-based therapeutics targeting exNef to treat HIV-associated neuropathogenesis.


Journal of NeuroVirology | 2016

Nef exosomes isolated from the plasma of individuals with HIV-associated dementia (HAD) can induce Aβ(1-42) secretion in SH-SY5Y neural cells.

Khan Mb; Lang Mj; Ming-Bo Huang; Andrea Raymond; Vincent C. Bond; Bruce Shiramizu; Powell

In the era of combined antiretroviral therapy (CART), many of the complications due to HIV-1 infection have diminished. One exception is HIV-associated neurocognitive disorder (HAND). HAND is a spectrum of disorders in cognitive function that ranges from asymptomatic disease to severe dementia (HAD). The milder form of HAND has actually remained the same or slightly increased in prevalence in the CART era. Even in individuals who have maintained undetectable HIV RNA loads, viral proteins such as Nef and Tat can continue to be expressed. In this report, we show that Nef protein and nef messenger RNA (mRNA) are packaged into exosomes that remain in circulation in patients with HAD. Plasma-derived Nef exosomes from patients with HAD have the ability to interact with the neuroblastoma cell line SH-SY5Y and deliver nef mRNA. The mRNA can induce expression of Nef in target cells and subsequently increase expression and secretion of beta-amyloid (Aβ) and Aβ peptides. Increase secretion of amyloid peptide could contribute to cognitive impairment seen in HAND.


PLOS ONE | 2013

Cocaine Enhances HIV-1 Infectivity in Monocyte Derived Dendritic Cells by Suppressing microRNA-155

Jessica Napuri; Sudheesh Pilakka-Kanthikeel; Andrea Raymond; Marisela Agudelo; Adriana Yndart-Arias; Shailendra K. Saxena; Madhavan Nair

Cocaine and other drugs of abuse increase HIV-induced immunopathogenesis; and neurobiological mechanisms of cocaine addiction implicate a key role for microRNAs (miRNAs), single-stranded non-coding RNAs that regulate gene expression and defend against viruses. In fact, HIV defends against miRNAs by actively suppressing the expression of polycistronic miRNA cluster miRNA-17/92, which encodes miRNAs including miR-20a. IFN-g production by natural killer cells is regulated by miR-155 and this miRNA is also critical to dendritic cell (DC) maturation. However, the impact of cocaine on miR-155 expression and subsequent HIV replication is unknown. We examined the impact of cocaine on two miRNAs, miR-20a and miR-155, which are integral to HIV replication, and immune activation. Using miRNA isolation and analysis, RNA interference, quantitative real time PCR, and reporter assays we explored the effects of cocaine on miR-155 and miR-20 in the context of HIV infection. Here we demonstrate using monocyte-derived dendritic cells (MDCCs) that cocaine significantly inhibited miR-155 and miR-20a expression in a dose dependent manner. Cocaine and HIV synergized to lower miR-155 and miR-20a in MDDCs by 90%. Cocaine treatment elevated LTR-mediated transcription and PU.1 levels in MDCCs. But in context of HIV infection, PU.1 was reduced in MDDCs regardless of cocaine presence. Cocaine increased DC-SIGN and and decreased CD83 expression in MDDC, respectively. Overall, we show that cocaine inhibited miR-155 and prevented maturation of MDDCs; potentially, resulting in increased susceptibility to HIV-1. Our findings could lead to the development of novel miRNA-based therapeutic strategies targeting HIV infected cocaine abusers.


Journal of Neuroinflammation | 2015

Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1)-facilitated HIV restriction in astrocytes is regulated by miRNA-181a

Sudheesh Pilakka-Kanthikeel; Andrea Raymond; Venkata Subba Rao Atluri; Vidya Sagar; Shailendra K. Saxena; Patricia Diaz; Semithe Chevelon; Michael Concepcion; Madhavan Nair

BackgroundAlthough highly active antiretroviral therapy (HAART) has significantly reduced the morbidity and mortality in HIV patients, virus continues to reside in the central nervous system (CNS) reservoir. Hence, a complete eradication of virus remains a challenge. HIV productively infects microglia/macrophages, but astrocytes are generally restricted to HIV infection. The relative importance of the possible replication blocks in astrocytes, however, is yet to be delineated. A recently identified restriction factor, sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1), restricts HIV infection in resting CD4+T cells and in monocyte-derived dendritic cells. However, SAMHD1 expression and HIV-1 restriction activity regulation in the CNS cells are unknown. Though, certain miRNAs have been implicated in HIV restriction in resting CD4+T cells, their role in the CNS HIV restriction and their mode of action are not established. We hypothesized that varying SAMHD1 expression would lead to restricted HIV infection and host miRNAs would regulate SAMHD1 expression in astrocytes.ResultsWe found increased SAMHD1 expression and decreased miRNA expression (miR-181a and miR-155) in the astrocytes compared to microglia. We report for the first time that miR-155 and miR-181a regulated the SAMHD1 expression. Overexpression of these cellular miRNAs increased viral replication in the astrocytes, through SAMHD1 modulation. Reactivation of HIV replication was accompanied by decrease in SAMHD1 expression.ConclusionsHere, we provide a proof of concept that increased SAMHD1 in human astrocytes is in part responsible for the HIV restriction, silencing of which relieves this restriction. At this time, this concept is of theoretical nature. Further experiments are needed to confirm if HIV replication can be reactivated in the CNS reservoir.


International Journal of Nanomedicine | 2015

Preparation and characterization of anti-HIV nanodrug targeted to microfold cell of gut-associated lymphoid tissue

Upal Roy; Hong Ding; Sudheesh Pilakka-Kanthikeel; Andrea Raymond; Venkata Subba Rao Atluri; Adriana Yndart; Elena M. Kaftanovskaya; Elena V. Batrakova; Marisela Agudelo; Madhavan Nair

The human immunodeficiency virus 1 (HIV-1) still remains one of the leading life-threatening diseases in the world. The introduction of highly active antiretroviral therapy has significantly reduced disease morbidity and mortality. However, most of the drugs have variable penetrance into viral reservoir sites, including gut-associated lymphoid tissue (GALT). Being the largest lymphoid organ, GALT plays a key role in early HIV infection and host–pathogen interaction. Many different treatment options have been proposed to eradicate the virus from GALT. However, it becomes difficult to deliver traditional drugs to the GALT because of its complex physiology. In this regard, we developed a polymer-based Pluronic nanocarrier containing anti-HIV drug called efavirenz (EFV) targeting Microfold cells (M-cells) in the GALT. M-cells are specialized epithelial cells that are predominantly present in the GALT. In this work, we have exploited this paracellular transport property of M-cells for targeted delivery of Pluronic nanocarrier tagged EFV, bioconjugated with anti-M-cell-specific antibodies to the GALT (nanodrug). Preliminary characterization showed that the nanodrug (EFV-F12-COOH) is of 140 nm size with 0.3 polydispersion index, and the zeta potential of the particles was −19.38±2.2 mV. Further, drug dissolution study has shown a significantly improved sustained release over free drugs. Binding potential of nanodrug with M-cell was also confirmed with fluorescence microscopy and in vitro uptake and release studies. The anti-HIV activity of the nanodrug was also significantly higher compared to that of free drug. This novel formulation was able to show sustained release of EFV and inhibit the HIV-1 infection in the GALT compared to the free drug. The present study has potential for our in vivo targeted nanodrug delivery system by combining traditional enteric-coated capsule technique via oral administration.


Nanoscale | 2017

Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain

Asahi Tomitaka; Hamed Arami; Andrea Raymond; Adriana Yndart; Ajeet Kaushik; Rahul Dev Jayant; Yasushi Takemura; Yong Cai; Michal Toborek; Madhavan Nair

Magneto-plasmonic nanoparticles are one of the emerging multi-functional materials in the field of nanomedicine. Their potential for targeting and multi-modal imaging is highly attractive. In this study, magnetic core/gold shell (MNP@Au) magneto-plasmonic nanoparticles were synthesized by citrate reduction of Au ions on magnetic nanoparticle seeds. Hydrodynamic size and optical properties of magneto-plasmonic nanoparticles synthesized with the variation of Au ions and reducing agent concentrations were evaluated. The synthesized magneto-plasmonic nanoparticles exhibited superparamagnetic properties, and their magnetic properties contributed to the concentration-dependent contrast in magnetic resonance imaging (MRI). The imaging contrast from the gold shell part of the magneto-plasmonic nanoparticles was also confirmed by X-ray computed tomography (CT). The transmigration study of the magneto-plasmonic nanoparticles using an in vitro blood-brain barrier (BBB) model proved enhanced transmigration efficiency without disrupting the integrity of the BBB, and showed potential to be used for brain diseases and neurological disorders.


Scientific Reports | 2015

HIV Subtypes B and C gp120 and Methamphetamine Interaction: Dopaminergic System Implicates Differential Neuronal Toxicity

Thangavel Samikkannu; Kurapati V. K. Rao; Abdul Salam; Venkata Subba Rao Atluri; Elena M. Kaftanovskaya; Marisela Agudelo; Suray Perez; Changwon Yoo; Andrea Raymond; Hong Ding; Madhavan Nair

HIV subtypes or clades differentially induce HIV-associated neurocognitive disorders (HAND) and substance abuse is known to accelerate HIV disease progression. The HIV-1 envelope protein gp120 plays a major role in binding and budding in the central nervous system (CNS) and impacts dopaminergic functions. However, the mechanisms utilized by HIV-1 clades to exert differential effects and the methamphetamine (METH)-associated dopaminergic dysfunction are poorly understood. We hypothesized that clade B and C gp120 structural sequences, modeling based analysis, dopaminergic effect, and METH potentiate neuronal toxicity in astrocytes. We evaluated the effect of clade B and C gp120 and/or METH on the DRD-2, DAT, CaMKs and CREBP transcription. Both the structural sequence and modeling studies demonstrated that clade B gp120 in V1-V4, α -2 and N-glycosylated sites are distinct from clade C gp120. The distinct structure and sequence variation of clade B gp120 differentially impact DRD-2, DAT, CaMK II and CaMK IV mRNA, protein and intracellular expression compared to clade C gp120. However, CREB transcription is upregulated by both clade B and C gp120, and METH co-treatment potentiated these effects. In conclusion, distinct structural sequences of HIV-1 clade B and C gp120 differentially regulate the dopaminergic pathway and METH potentiates neurotoxicity.


ACS Chemical Neuroscience | 2015

Investigation of Neuropathogenesis in HIV-1 Clade B and C Infection Associated with IL-33 and ST2 Regulation.

Adriana Yndart; Ajeet Kaushik; Marisela Agudelo; Andrea Raymond; Venkata Subba Rao Atluri; Shailendra K. Saxena; Madhavan Nair

In present research work, for the first time, we demonstrate that neuropathogenesis in HIV-1 clade B and C infection is associated with IL-33 and ST2 dysregulation, that is, implication toward neuropathogenesis. It is known that neuropathogenesis of HIV infected individuals is clade dependent. Proinflammatory cytokines and related receptors play a significant role in the complex regulatory mechanisms of neuropathogenesis in HIV-1 infection. Among them, IL-33 is an inflammatory cytokine expressed in the central nervous system (CNS) and activates microglia cells and may affect neuroimmune inflammatory processes involved in HIV neuropathogenesis. Beside this, IL-33 receptor (ST2) plays a role in neuroinflammatory processes through the modulation of the biological action of IL-33. quantitative real time PCR (qRT-PCR), ELISA, Western blot (WB), and flow cytometry experiments were performed to elucidate the role of IL-33/ST2 in HIV neuropathogenesis in CNS cells. Apoptosis and mechanisms of IL-33 in neuronal cells were studied using caspase-3 assay and RT-PCR. Results of the studies suggest that the infection in CNS cells with HIV-1 clade B resulted in higher levels of IL-33/ST2L expression compared to HIV-1 clade C infection. Furthermore, higher concentrations of IL-33 were associated with a decrease in myocyte enhancer factor 2C (MEF2C) expression, a transcription factor that regulates synaptic function, and an increase in apoptosis, NOD2, and SLC11A1 in clade B infection. This led to neuroinflammation which dysregulates synaptic function and apoptosis. These parameters are common in neuroAIDS provoked by HIV infection.


PLOS ONE | 2014

Immunopathogenesis of HIV infection in cocaine users: role of arachidonic acid.

Thangavel Samikkannu; Kurapati V. K. Rao; Hong Ding; Marisela Agudelo; Andrea Raymond; Changwon Yoo; Madhavan Nair

Arachidonic acid (AA) is known to be increased in HIV infected patients and illicit drug users are linked with severity of viral replication, disease progression, and impaired immune functions. Studies have shown that cocaine accelerates HIV infection and disease progression mediated by immune cells. Dendritic cells (DC) are the first line of antigen presentation and defense against immune dysfunction. However, the role of cocaine use in HIV associated acceleration of AA secretion and its metabolites on immature dendritic cells (IDC) has not been elucidated yet. The aim of this study is to elucidate the mechanism of AA metabolites cyclooxygenase-2 (COX-2), prostaglandin E2 synthetase (PGE2), thromboxane A2 receptor (TBXA2R), cyclopentenone prostaglandins (CyPG), such as 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2), 14-3-3 ζ/δ and 5-lipoxygenase (5-LOX) mediated induction of IDC immune dysfunctions in cocaine using HIV positive patients. The plasma levels of AA, PGE2, 15d-PGJ2, 14-3-3 ζ/δ and IDC intracellular COX-2 and 5-LOX expression were assessed in cocaine users, HIV positive patients, HIV positive cocaine users and normal subjects. Results showed that plasma concentration levels of AA, PGE2 and COX-2, TBXA2R and 5-LOX in IDCs of HIV positive cocaine users were significantly higher whereas 15d-PGJ2 and 14-3-3 ζ/δ were significantly reduced compared to either HIV positive subjects or cocaine users alone. This report demonstrates that AA metabolites are capable of mediating the accelerative effects of cocaine on HIV infection and disease progression.


Nanotechnology | 2014

Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation

Hong Ding; Vidya Sagar; Marisela Agudelo; Sudheesh Pilakka-Kanthikeel; Venkata Subba Rao Atluri; Andrea Raymond; Thangavel Samikkannu; Madhavan Nair

Collaboration


Dive into the Andrea Raymond's collaboration.

Top Co-Authors

Avatar

Madhavan Nair

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Marisela Agudelo

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Hong Ding

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Venkata Subba Rao Atluri

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Adriana Yndart

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Thangavel Samikkannu

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Shailendra K. Saxena

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Ajeet Kaushik

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Vidya Sagar

Florida International University

View shared research outputs
Researchain Logo
Decentralizing Knowledge