Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriano D. Andricopulo is active.

Publication


Featured researches published by Adriano D. Andricopulo.


Molecules | 2015

Molecular Docking and Structure-Based Drug Design Strategies

Leonardo G. Ferreira; Ricardo N. dos Santos; Glaucius Oliva; Adriano D. Andricopulo

Pharmaceutical research has successfully incorporated a wealth of molecular modeling methods, within a variety of drug discovery programs, to study complex biological and chemical systems. The integration of computational and experimental strategies has been of great value in the identification and development of novel promising compounds. Broadly used in modern drug design, molecular docking methods explore the ligand conformations adopted within the binding sites of macromolecular targets. This approach also estimates the ligand-receptor binding free energy by evaluating critical phenomena involved in the intermolecular recognition process. Today, as a variety of docking algorithms are available, an understanding of the advantages and limitations of each method is of fundamental importance in the development of effective strategies and the generation of relevant results. The purpose of this review is to examine current molecular docking strategies used in drug discovery and medicinal chemistry, exploring the advances in the field and the role played by the integration of structure- and ligand-based methods.


Current Medicinal Chemistry | 2008

Virtual Screening and Its Integration with Modern Drug Design Technologies

Adriano D. Andricopulo; Rafael V. C. Guido; Glaucius Oliva

Drug discovery is a highly complex and costly process, which demands integrated efforts in several relevant aspects involving innovation, knowledge, information, technologies, expertise, R&D investments and management skills. The shift from traditional to genomics- and proteomics-based drug research has fundamentally transformed key R&D strategies in the pharmaceutical industry addressed to the design of new chemical entities as drug candidates against a variety of biological targets. Therefore, drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. The combination of available knowledge of several 3D protein structures with hundreds of thousands of small-molecules have attracted the attention of scientists from all over the world for the application of structure- and ligand-based drug design approaches. In this context, virtual screening technologies have largely enhanced the impact of computational methods applied to chemistry and biology and the goal of applying such methods is to reduce large compound databases and to select a limited number of promising candidates for drug design. This review provides a perspective of the utility of virtual screening in drug design and its integration with other important drug discovery technologies such as high-throughput screening (HTS) and QSAR, highlighting the present challenges, limitations, and future perspectives in medicinal chemistry.


Current Topics in Medicinal Chemistry | 2009

Structure-Based Drug Design Strategies in Medicinal Chemistry

Adriano D. Andricopulo; Lívia B. Salum; Donald J. Abraham

A broad variety of medicinal chemistry approaches can be used for the identification of hits, generation of leads, as well as to accelerate the development of high quality drug candidates. Structure-based drug design (SBDD) methods are becoming increasingly powerful, versatile and more widely used. This review summarizes current developments in structure-based virtual screening and receptor-based pharmacophores, highlighting achievements as well as challenges, along with the value of structure-based lead optimization, with emphasis on recent examples of successful applications for the identification of novel active compounds.


Journal of Chromatography A | 2003

Development and characterization of an immobilized enzyme reactor based on glyceraldehyde-3-phosphate dehydrogenase for on-line enzymatic studies

Carmem L. Cardoso; Virgínia Veronica de Lima; Aderson Zottis; Glaucius Oliva; Adriano D. Andricopulo; Irving W. Wainer; Ruin Moaddel; Quezia B. Cass

The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been extensively studied as a target for new drugs to be used in the treatment of various parasitic diseases. The standard approach to the determination of GAPDH activity utilizes solubilized free enzyme and is limited by the enzymes low stability. In the current study the stability of GAPDH was significantly increased through the covalent immobilization of the enzyme on a wide-pore silica support containing glutaraldehyde (Glut-P). The optimal conditions for the immobilization were: 100 mg Glut-P stationary phase, approximately 150 microg of enzyme dissolved in pyrophosphate buffer (15 mM, pH 8.5). The mixture was gently agitated for 6 h at 4 degrees C. Under these conditions 91.3% of protein was immobilized on 100 mg of Glut-P support with retention of 2.97% of the initial enzymatic activity. The activity of the immobilized GAPDH was stable for over 30 days. The GAPDH-Glut-P stationary phase was packed into a glass column to produce a GAPDH immobilized enzyme reactor (GAPDH-IMER). The activity and kinetic parameters of the GAPDH-IMER were investigated and the results demonstrated that the enzyme retained its activity and sensitivity to the competitive inhibitor agaric acid.


Molecular Diversity | 2009

Fragment-based QSAR: perspectives in drug design

Lívia B. Salum; Adriano D. Andricopulo

Drug design is a process driven by innovation and technological breakthroughs involving a combination of advanced experimental and computational methods. A broad variety of medicinal chemistry approaches can be used for the identification of hits, generation of leads, as well as to accelerate the optimization of leads into drug candidates. Quantitative structure–activity relationship (QSAR) methods are among the most important strategies that can be applied for the successful design of small molecule modulators having clinical utility. Hologram QSAR (HQSAR) is a modern 2D fragment-based QSAR method that employs specialized molecular fingerprints. HQSAR can be applied to large data sets of compounds, as well as traditional-size sets, being a versatile tool in drug design. The HQSAR approach has evolved from a classical use in the generation of standard QSAR models for data correlation and prediction into advanced drug design tools for virtual screening and pharmacokinetic property prediction. This paper provides a brief perspective on the evolution and current status of HQSAR, highlighting present challenges and new opportunities in drug design.


Bioinformatics | 2008

PK/DB

Tiago L. Moda; Leonardo G. Torres; Alexandre E. Carrara; Adriano D. Andricopulo

UNLABELLED The study of pharmacokinetic properties (PK) is of great importance in drug discovery and development. In the present work, PK/DB (a new freely available database for PK) was designed with the aim of creating robust databases for pharmacokinetic studies and in silico absorption, distribution, metabolism and excretion (ADME) prediction. Comprehensive, web-based and easy to access, PK/DB manages 1203 compounds which represent 2973 pharmacokinetic measurements, including five models for in silico ADME prediction (human intestinal absorption, human oral bioavailability, plasma protein binding, blood-brain barrier and water solubility). AVAILABILITY http://www.pkdb.ifsc.usp.br


Journal of Natural Products | 2013

Development of a natural products database from the biodiversity of Brazil.

Marilia Valli; Ricardo N. dos Santos; Leandro D. Figueira; Cíntia H. Nakajima; Ian Castro-Gamboa; Adriano D. Andricopulo; Vanderlan da Silva Bolzani

We describe herein the design and development of an innovative tool called the NuBBE database (NuBBEDB), a new Web-based database, which incorporates several classes of secondary metabolites and derivatives from the biodiversity of Brazil. This natural product database incorporates botanical, chemical, pharmacological, and toxicological compound information. The NuBBEDB provides specialized information to the worldwide scientific community and can serve as a useful tool for studies on the multidisciplinary interfaces related to chemistry and biology, including virtual screening, dereplication, metabolomics, and medicinal chemistry. The NuBBEDB site is at http://nubbe.iq.unesp.br/nubbeDB.html .


British Journal of Pharmacology | 2010

Novel ruthenium complexes as potential drugs for Chagas's disease: enzyme inhibition and in vitro/in vivo trypanocidal activity

Jean Jerley Nogueira da Silva; Paulo Marcos da Matta Guedes; Aderson Zottis; Tatiane Luciano Balliano; Francisco O.N. da Silva; Luiz Gonzaga de França Lopes; Javier Ellena; Glaucius Oliva; Adriano D. Andricopulo; Douglas W. Franco; João Santana da Silva

Background and purpose:  The discovery of the pharmacological functions of nitric oxide has led to the development of NO donor compounds as therapeutic agents. A new generation of ruthenium NO donors, cis‐[Ru(NO)(bpy)2L]Xn, has been developed, and our aim was to show that these complexes are able to lyse Trypanosoma cruzi in vitro and in vivo.


Journal of Inorganic Biochemistry | 2010

Dithiocarbazate complexes with the [M(PPh3)]2+ (M=Pd or Pt) moiety Synthesis, characterization and anti-Tripanosoma cruzi activity

Pedro Ivo da S. Maia; André G. de A. Fernandes; Jean Jerley Nogueira da Silva; Adriano D. Andricopulo; Sebastião S. Lemos; Ernesto Schulz Lang; Ulrich Abram; Victor M. Deflon

New neutral Pd(II) and Pt(II) complexes of the type [M(L)(PPh(3))] (M = Pd or Pt) were prepared in crystalline form in high-yield synthesis with the S-benzyldithiocarbazates and S-4-nitrobenzyldithiocarbazates derivatives from 2-hydroxyacetophenone, H(2)L(1a) and H(2)L(1b), and benzoylacetone, H(2)L(2a) and H(2)L(2b). The new complexes [Pt(L(1a))(PPh(3))] (1), [Pd(L(1a))(PPh(3))] (2), [Pt(L(1b))(PPh(3))] (3), [Pd(L(1b))(PPh(3))] (4), [Pt(L(2a))(PPh(3))] (5), [Pd(L(2a))(PPh(3))] (6), [Pt(L(2b))(PPh(3))] (7) and [Pd(L(2b))(PPh(3))] (8) were characterized on the basis of elemental analysis, conductivity measurements, UV-visible, IR, electrospray ionization mass spectrometry (ESI-MS), NMR ((1)H and (31)P) and by X-ray diffraction studies. The studies showed that differently from what was observed for the H(2)L(1a) and H(2)L(1b) ligands, H(2)L(2a) and H(2)L(2b) assume cyclic forms as 5-hydroxypyrazolinic. Upon coordination, H(2)L(2a) and H(2)L(2b) suffer ring-opening reaction, coordinating in the same manner as H(2)L(1a) and H(2)L(1b), deprotonated and in O,N,S-tridentate mode to the (MPPh(3))(2+) moiety. All complexes show a quite similar planar fourfold environment around the M(II) center. Furthermore, these complexes exhibited biological activity on extra and intracellular forms of Trypanosoma cruzi in a time- and concentration-dependent manner with IC(50) values ranging from 7.8 to 18.7 μM, while the ligand H(2)L(2a) presented a trypanocidal activity on trypomastigote form better than the standard drug benznidazole.


Bioorganic & Medicinal Chemistry | 2010

Inhibition of Mycobacterium tuberculosis tyrosine phosphatase PtpA by synthetic chalcones: Kinetics, molecular modeling, toxicity and effect on growth

Alessandra Mascarello; Louise Domeneghini Chiaradia; Javier Vernal; Andrea Villarino; Rafael V. C. Guido; Paulo Perizzolo; Valérie Poirier; Dennis Wong; Priscila Graziela Alves Martins; Ricardo José Nunes; Rosendo A. Yunes; Adriano D. Andricopulo; Yossef Av-Gay; Hernán Terenzi

Tuberculosis (TB) is a major cause of morbidity and mortality throughout the world, and it is estimated that one-third of the worlds population is infected with Mycobacterium tuberculosis. Among a series of tested compounds, we have recently identified five synthetic chalcones which inhibit the activity of M. tuberculosis protein tyrosine phosphatase A (PtpA), an enzyme associated with M. tuberculosis infectivity. Kinetic studies demonstrated that these compounds are reversible competitive inhibitors. In this work we also carried out the analysis of the molecular recognition of these inhibitors on their macromolecular target, PtpA, through molecular modeling. We observed that the predominant determinants responsible for the inhibitory activity of the chalcones are the positions of the two methoxyl groups at the A-ring, that establish hydrogen bonds with the amino acid residues Arg17, His49, and Thr12 in the active site of PtpA, and the substitution of the phenyl ring for a 2-naphthyl group as B-ring, that undergoes pi stacking hydrophobic interaction with the Trp48 residue from PtpA. Interestingly, reduction of mycobacterial survival in human macrophages upon inhibitor treatment suggests their potential use as novel therapeutics. The biological activity, synthetic versatility, and low cost are clear advantages of this new class of potential tuberculostatic agents.

Collaboration


Dive into the Adriano D. Andricopulo's collaboration.

Top Co-Authors

Avatar

Glaucius Oliva

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luiz C. Dias

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renata Krogh

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge