Leonardo G. Ferreira
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonardo G. Ferreira.
Molecules | 2015
Leonardo G. Ferreira; Ricardo N. dos Santos; Glaucius Oliva; Adriano D. Andricopulo
Pharmaceutical research has successfully incorporated a wealth of molecular modeling methods, within a variety of drug discovery programs, to study complex biological and chemical systems. The integration of computational and experimental strategies has been of great value in the identification and development of novel promising compounds. Broadly used in modern drug design, molecular docking methods explore the ligand conformations adopted within the binding sites of macromolecular targets. This approach also estimates the ligand-receptor binding free energy by evaluating critical phenomena involved in the intermolecular recognition process. Today, as a variety of docking algorithms are available, an understanding of the advantages and limitations of each method is of fundamental importance in the development of effective strategies and the generation of relevant results. The purpose of this review is to examine current molecular docking strategies used in drug discovery and medicinal chemistry, exploring the advances in the field and the role played by the integration of structure- and ligand-based methods.
Molecules | 2013
Luiz Anastacio Alves; Rômulo José Soares Bezerra; Robson Xavier Faria; Leonardo G. Ferreira; Valber da Silva Frutuoso
The P2X7 receptor (P2X7R) is a nonselective cation channel that is activated by extracellular ATP and triggers the secretion of several proinflammatory substances, such as IL-1β, IL-18, TNF-α, and nitric oxide. Recently, several preclinical studies have demonstrated that this receptor participates in inflammation and pain mechanisms. Taken together, these results indicate that P2X7R is a promising pharmacological target, and compounds that modulate the function of this receptor show potential as new anti-inflammatory medicines. In this review, we discuss aspects of P2X7R pharmacology and the participation of this protein in inflammation and pain and provide an overview of some promising compounds that have been tested as antagonists of P2X7R, with clinical applicability.
Journal of Bioenergetics and Biomembranes | 2016
Leonardo G. Ferreira; Robson Xavier Faria
Ion channels allow for rapid ion diffusion through the plasma membrane. In some conditions, ion channels induce changes in the critical plasma membrane permeability that permit 900-Da solutes to enter cells. This process is known as the pore phenomenon. Some transient receptor potential (TRP) channel subtypes have been highlighted such as the P2X7 receptor, plasma membrane VDAC-1 channel, and pannexin hemichannels. The TRP ion channels are considered multimodal transducers that respond to several kinds of stimuli. In addition, many TRP channel subtypes are involved in physiological and pathophysiological processes such as inflammation, pain, and cancer. The TRPA1, TRPM8, and TRPV1-4 subtypes have been shown to promote large-molecular-weight solute uptake, including impermeable fluorescent dyes, QX-314 hydrophilic lidocaine derivative, gabapentin, and antineoplastic drugs. This review discusses the current knowledge of TRP-associated pores and encourages scientists to study their features and explore them as novel therapeutic tools.
Molecules | 2012
Robson Xavier Faria; Leonardo G. Ferreira; Rômulo José Soares Bezerra; Valber da Silva Frutuoso; Luiz Anastacio Alves
Natural products contribute significantly to available drug therapies and have been a rich source for scientific investigation. In general, due to their low cost and traditional use in some cultures, they are an object of growing interest as alternatives to synthetic drugs. With several diseases such as cancer, and inflammatory and neuropathic diseases having been linked to the participation of purinergic (P2) receptors, there has been a flurry of investigations on ligands within natural products. Thirty-four different sources of these compounds have been found so far, that have shown either agonistic or antagonistic effects on P2 receptors. Of those, nine different plant sources demonstrated effects on P2X2, P2X3, P2X7, and possibly P2Y12 receptor subtypes. Microorganisms, which represent the largest group, with 26 different sources, showed effects on both receptor subtypes, ranging from P2X1 to P2X4 and P2X7, and P2Y1, P2Y2, P2Y4, and P2Y6. In addition, there were seventeen animal sources that affected P2X7 and P2Y1 and P2Y12 receptors. Natural products have provided some fascinating new mechanisms and sources to better understand the P2 receptor antagonism. Moreover, current investigations should clarify further pharmacological mechanisms in order to consider these products as potential new medicines.
PLOS ONE | 2016
Hércules Rezende Freitas; Gabriel Ferraz; Gustavo C. Ferreira; Victor Túlio Ribeiro-Resende; Luciana B. Chiarini; José Luiz Martins do Nascimento; Karen Renata Matos Oliveira; Tiago de Lima Pereira; Leonardo G. Ferreira; Regina Célia Cussa Kubrusly; Robson Xavier Faria; Anderson Manoel Herculano; Ricardo Augusto de Melo Reis
Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit.
Current Topics in Medicinal Chemistry | 2016
Leonardo G. Ferreira; Marcelo T. de Oliveira; Adriano D. Andricopulo
Chagas disease represents a serious burden for millions of people worldwide. Transmitted by the protozoan parasite Trypanosoma cruzi, this neglected tropical disease causes more than 10,000 deaths each year and is the main cause of heart failure in Latin America, where it is endemic. Although most cases are concentrated in Latin American countries, Chagas disease has been increasingly reported in non-endemic regions, where the low level of public awareness on the subject contributes to the growing prevalence of the disease. The available medicines are characterized by several safety and efficacy drawbacks that prevent millions of people, particularly those with advanced disease, from receiving adequate treatment. This urgent need has stimulated the emergence of diverse initiatives dedicated to the research and development (R&D) of novel therapeutic agents for Chagas disease. Public-private partnerships have been responsible for a significant increase in the investments in R&D programs and major advancements have been achieved over the past ten years. A number of collaborative projects have been leveraged by this organizational model, which privileges sharing of data, expertise, and resources between research institutions and pharmaceutical companies. Among the current strategies employed by these consortia, target-based and phenotypic screenings have achieved the most promising results. This article provides an overview on the current status and recent advances in Chagas disease drug discovery.
Future Medicinal Chemistry | 2017
Ivani Pauli; Leonardo G. Ferreira; Mariana L. Souza; Glaucius Oliva; Rafaela Salgado Ferreira; Marco A. Dessoy; Brian W Slafer; Luiz C. Dias; Adriano D. Andricopulo
AIM Chagas disease is endemic in Latin America and no effective treatment is available. Efforts in drug research have focused on several enzymes from Trypanosoma cruzi, among which cruzain is a validated pharmacological target. METHODOLOGY Chemometric analyses were performed on the data set using the hologram quantitative structure-activity relationship, comparative molecular field analysis and comparative molecular similarity index analysis methods. Docking simulations were executed using the crystallographic structure of cruzain in complex with a benzimidazole inhibitor. The top-scoring enzyme-inhibitor complexes were selected for the development of the 3D quantitative structure-activity relationship (QSAR) models and to assess the inhibitor binding modes and intermolecular interactions. RESULTS Benzimidazole derivatives as cruzain inhibitors were used in molecular docking and QSAR studies. Significant statistical indicators were obtained, and the best models demonstrated high predictive ability for an external test set (r 2pred = 0.65, 0.94 and 0.82 for hologram QSAR, comparative molecular field analysis and comparative molecular similarity index analysis, respectively). Additionally, the graphical information of the chemometric analyses demonstrated substantial complementarity with the enzyme-binding site. CONCLUSION These results demonstrate the relevance of the QSAR models to guide the design of structurally related benzimidazole derivatives with improved potency.
PLOS ONE | 2016
Anael Viana Pinto Alberto; Robson Xavier Faria; João R. L. Menezes; Andrea Surrage; Natasha Cristina da Rocha; Leonardo G. Ferreira; Valber da Silva Frutuoso; Marco A. Martins; Luiz Anastacio Alves
ATP and other nucleotides are released from cells through regulated pathways or following the loss of plasma membrane integrity. Once outside the cell, these compounds can activate P2 receptors: P2X ionotropic receptors and G protein-coupled P2Y receptors. Eosinophils represent major effector cells in the allergic inflammatory response and they are, in fact, associated with several physiological and pathological processes. Here we investigate the expression of P2 receptors and roles of those receptors in murine eosinophils. In this context, our first step was to investigate the expression and functionality of the P2X receptors by patch clamping, our results showed a potency ranking order of ATP>ATPγS> 2meSATP> ADP> αβmeATP> βγmeATP>BzATP> UTP> UDP>cAMP. This data suggest the presence of P2X1, P2X2 and P2X7. Next we evaluate by microfluorimetry the expression of P2Y receptors, our results based in the ranking order of potency (UTP>ATPγS> ATP > UDP> ADP >2meSATP > αβmeATP) suggests the presence of P2Y2, P2Y4, P2Y6 and P2Y11. Moreover, we confirmed our findings by immunofluorescence assays. We also did chemotaxis assays to verify whether nucleotides could induce migration. After 1 or 2 hours of incubation, ATP increased migration of eosinophils, as well as ATPγS, a less hydrolysable analogue of ATP, while suramin a P2 blocker abolished migration. In keeping with this idea, we tested whether these receptors are implicated in the migration of eosinophils to an inflammation site in vivo, using a model of rat allergic pleurisy. In fact, migration of eosinophils has increased when ATP or ATPγS were applied in the pleural cavity, and once more suramin blocked this effect. We have demonstrated that rat eosinophils express P2X and P2Y receptors. In addition, the activation of P2 receptors can increase migration of eosinophils in vitro and in vivo, an effect blocked by suramin.
Journal of Modern Medicinal Chemistry | 2014
Leonardo G. Ferreira; Adriano D. Andricopulo
The prevalence of a variety of neglected diseases is an increasing serious public health problem in developing countries, particularly in the poorest and most remote areas with very little or no access to medical care. The consequences in terms of morbidity and mortality due to these infections are devastating and have a major social and economic impact in several relevant aspects. According to the World Health Organization, these diseases are one of the most important scientific and technological challenges that face humankind in the 21st century. Although they affect more than a billion people around the world, there are only a few safe and effective drugs currently available. The urgent need for new drugs has led pharmaceutical and academic R&D centers to employ more knowledge-based platforms, as an unprecedented opportunity to make a significant impact on the lives of disadvantaged people through the discovery of novel therapeutic options. In this perspective we discuss the successful application of modern medicinal chemistry approaches to neglected diseases.
Current Diabetes Reviews | 2013
Paulo Anastácio Furtado Pacheco; Leonardo G. Ferreira; Luiz Anastacio Alves; Robson Xavier Faria
Morbidity and mortality from diabetes mellitus (DM) are serious worldwide concerns. By the year 2030, the estimated number of diabetic patients will reach a staggering 439 million worldwide. Diabetes mellitus type 2 (DM2), which involves disturbances in both insulin secretion and resistance, is the most common form of diabetes and affects approximately 5 to 7% of the worlds population. When a patient with DM2 cannot regulate his or her blood glucose levels through diet, weight loss, or exercise, oral medications, such as hypoglycemic agents (i.e., sulphonylureas, biguanides, alpha glucosidase inhibitors and thiazolidinediones), are crucial. Here, we discuss some physiological aspects of P2 receptors on pancreatic β-cells, which express a variety of P2 receptor isoforms. These receptors enhance glucose-dependent insulin release. In addition, we speculate on the potential of purinergic compounds as novel or additional treatments for Type 2 Diabetes mellitus.