Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrie Dane is active.

Publication


Featured researches published by Adrie Dane.


Molecular & Cellular Proteomics | 2010

Quantitative Proteomics and Metabolomics Analysis of Normal Human Cerebrospinal Fluid Samples

Marcel P. Stoop; Leon Coulier; Therese Rosenling; Shanna Shi; Agnieszka Smolinska; L.M.C. Buydens; Kirsten A. M. Ampt; Christoph Stingl; Adrie Dane; Bas Muilwijk; Ronald L. Luitwieler; Peter A. E. Sillevis Smitt; Rogier Q. Hintzen; Rainer Bischoff; Sybren S. Wijmenga; Thomas Hankemeier; Alain J. van Gool; Theo M. Luider

The analysis of cerebrospinal fluid (CSF) is used in biomarker discovery studies for various neurodegenerative central nervous system (CNS) disorders. However, little is known about variation of CSF proteins and metabolites between patients without neurological disorders. A baseline for a large number of CSF compounds appears to be lacking. To analyze the variation in CSF protein and metabolite abundances in a number of well-defined individual samples of patients undergoing routine, non-neurological surgical procedures, we determined the variation of various proteins and metabolites by multiple analytical platforms. A total of 126 common proteins were assessed for biological variations between individuals by ESI-Orbitrap. A large spread in inter-individual variation was observed (relative standard deviations [RSDs] ranged from 18 to 148%) for proteins with both high abundance and low abundance. Technical variation was between 15 and 30% for all 126 proteins. Metabolomics analysis was performed by means of GC-MS and nuclear magnetic resonance (NMR) imaging and amino acids were specifically analyzed by LC-MS/MS, resulting in the detection of more than 100 metabolites. The variation in the metabolome appears to be much more limited compared with the proteome: the observed RSDs ranged from 12 to 70%. Technical variation was less than 20% for almost all metabolites. Consequently, an understanding of the biological variation of proteins and metabolites in CSF of neurologically normal individuals appears to be essential for reliable interpretation of biomarker discovery studies for CNS disorders because such results may be influenced by natural inter-individual variations. Therefore, proteins and metabolites with high variation between individuals ought to be assessed with caution as candidate biomarkers because at least part of the difference observed between the diseased individuals and the controls will not be caused by the disease, but rather by the natural biological variation between individuals.


Aging Cell | 2013

Lipidomics of familial longevity

Vanessa Gonzalez-Covarrubias; Marian Beekman; Hae-Won Uh; Adrie Dane; Jorne Troost; Iryna Paliukhovich; Frans M. van der Kloet; Jeanine J. Houwing-Duistermaat; Rob J. Vreeken; Thomas Hankemeier; Eline Slagboom

Middle‐aged offspring of nonagenarians, as compared to their spouses (controls), show a favorable lipid metabolism marked by larger LDL particle size in men and lower total triglyceride levels in women. To investigate which specific lipids associate with familial longevity, we explore the plasma lipidome by measuring 128 lipid species using liquid chromatography coupled to mass spectrometry in 1526 offspring of nonagenarians (59 years ± 6.6) and 675 (59 years ± 7.4) controls from the Leiden Longevity Study. In men, no significant differences were observed between offspring and controls. In women, however, 19 lipid species associated with familial longevity. Female offspring showed higher levels of ether phosphocholine (PC) and sphingomyelin (SM) species (3.5–8.7%) and lower levels of phosphoethanolamine PE (38:6) and long‐chain triglycerides (TG) (9.4–12.4%). The association with familial longevity of two ether PC and four SM species was independent of total triglyceride levels. In addition, the longevity‐associated lipid profile was characterized by a higher ratio of monounsaturated (MUFA) over polyunsaturated (PUFA) lipid species, suggesting that female offspring have a plasma lipidome less prone to oxidative stress. Ether PC and SM species were identified as novel longevity markers in females, independent of total triglycerides levels. Several longevity‐associated lipids correlated with a lower risk of hypertension and diabetes in the Leiden Longevity Study cohort. This sex‐specific lipid signature marks familial longevity and may suggest a plasma lipidome with a better antioxidant capacity, lower lipid peroxidation and inflammatory precursors, and an efficient beta‐oxidation function.


Journal of Chromatography A | 2012

An efficient hydrophilic interaction liquid chromatography separation of 7 phospholipid classes based on a diol column.

Chao Zhu; Adrie Dane; Gerwin Spijksma; Mei Wang; Jan van der Greef; Guoan Luo; Thomas Hankemeier; Rob J. Vreeken

A hydrophilic interaction liquid chromatography (HILIC) - ion trap mass spectrometry method was developed for separation of a wide range of phospholipids. A diol column which is often used with normal phase chromatography was adapted to separate different phospholipid classes in HILIC mode using a mobile phase system consisting of acetonitrile, water, ammonium formate and formic acid. An efficient between-class separation of seven phospholipid classes including phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinostol, phosphatidylcholine, phosphatidylserine, sphingomyelin and lysophosphatidylcholine was successfully achieved within 14 min using a gradient elution which starts with 90% of organic solvent and ends with 70% of organic solvent. 53 mM formic acid (in both organic phase and aqueous phase) and 60mM ammonium formate (only in aqueous phase) were used as mobile phase modifier. The relatively high amount of ammonium formate was essential to obtain well-shaped peaks of each phospholipid class, especially phosphatidylserines; actually, no negative effect due to ammonium formate was observed for electrospray-mass spectrometry detection in real-life samples. Good chromatographic separation between different lipid classes was obtained (Rs, from 0.73 to 4.97) and well-shaped peaks (tailing factor, from 0.98 to 1.20) were obtained. The developed method was fully validated and the satisfactory performance characteristics such as linearity (R(2), 0.990-0.999), retention time stability (RSD<1%), within day repeatability (RSD, 5-13%), between day variation (RSD, 7-14%) and recoveries (99.6-115.5%) indicated the gradient HILIC method was appropriate for profiling of plasma phospholipids. The method was successfully applied to separate phospholipids extracts from human plasma, mouse plasma and rat plasma.


Diabetes Care | 2014

Roux-en-Y Gastric Bypass Surgery, but Not Calorie Restriction, Reduces Plasma Branched-Chain Amino Acids in Obese Women Independent of Weight Loss or the Presence of Type 2 Diabetes

Lips; J.B. van Klinken; Vanessa van Harmelen; Harish Dharuri; Peter A. C. 't Hoen; Jeroen F. J. Laros; G.J.B. van Ommen; Ignace M C Janssen; B. van Ramshorst; B. A. van Wagensveld; Dingeman J. Swank; F. M. H. van Dielen; Adrie Dane; Amy C. Harms; R. Vreeken; Thomas Hankemeier; Johannes W. A. Smit; Hanno Pijl; K.W. van Dijk

OBJECTIVE Obesity and type 2 diabetes mellitus (T2DM) have been associated with increased levels of circulating branched-chain amino acids (BCAAs) that may be involved in the pathogenesis of insulin resistance. However, weight loss has not been consistently associated with the reduction of BCAA levels. RESEARCH DESIGN AND METHODS We included 30 obese normal glucose-tolerant (NGT) subjects, 32 obese subjects with T2DM, and 12 lean female subjects. Obese subjects underwent either a restrictive procedure (gastric banding [GB], a very low-calorie diet [VLCD]), or a restrictive/bypass procedure (Roux-en-Y gastric bypass [RYGB] surgery). Fasting blood samples were taken for the determination of amine group containing metabolites 4 weeks before, as well as 3 weeks and 3 months after the intervention. RESULTS BCAA levels were higher in T2DM subjects, but not in NGT subjects, compared with lean subjects. Principal component (PC) analysis revealed a concise PC consisting of all BCAAs, which showed a correlation with measures of insulin sensitivity and glucose tolerance. Only after the RYGB procedure, and at both 3 weeks and 3 months, were circulating BCAA levels reduced. CONCLUSIONS Our data confirm an association between deregulation of BCAA metabolism in plasma and insulin resistance and glucose intolerance. Three weeks after undergoing RYGB surgery, a significant decrease in BCAAs in both NGT as well as T2DM subjects was observed. After 3 months, despite inducing significant weight loss, neither GB nor VLCD induced a reduction in BCAA levels. Our results indicate that the bypass procedure of RYGB surgery, independent of weight loss or the presence of T2DM, reduces BCAA levels in obese subjects.


Clinical Chemistry | 2011

The Impact of Delayed Storage on the Measured Proteome and Metabolome of Human Cerebrospinal Fluid

Therese Rosenling; Marcel P. Stoop; Agnieszka Smolinska; Bas Muilwijk; Leon Coulier; Shanna Shi; Adrie Dane; Christin Christin; Frank Suits; Peter Horvatovich; Sybren S. Wijmenga; Lutgarde M. C. Buydens; Rob J. Vreeken; Thomas Hankemeier; Alain J. van Gool; Theo M. Luider; Rainer Bischoff

BACKGROUND Because cerebrospinal fluid (CSF) is in close contact with diseased areas in neurological disorders, it is an important source of material in the search for molecular biomarkers. However, sample handling for CSF collected from patients in a clinical setting might not always be adequate for use in proteomics and metabolomics studies. METHODS We left CSF for 0, 30, and 120 min at room temperature immediately after sample collection and centrifugation/removal of cells. At 2 laboratories CSF proteomes were subjected to tryptic digestion and analyzed by use of nano-liquid chromatography (LC) Orbitrap mass spectrometry (MS) and chipLC quadrupole TOF-MS. Metabolome analysis was performed at 3 laboratories by NMR, GC-MS, and LC-MS. Targeted analyses of cystatin C and albumin were performed by LC-tandem MS in the selected reaction monitoring mode. RESULTS We did not find significant changes in the measured proteome and metabolome of CSF stored at room temperature after centrifugation, except for 2 peptides and 1 metabolite, 2,3,4-trihydroxybutanoic (threonic) acid, of 5780 identified peptides and 93 identified metabolites. A sensitive protein stability marker, cystatin C, was not affected. CONCLUSIONS The measured proteome and metabolome of centrifuged human CSF is stable at room temperature for up to 2 hours. We cannot exclude, however, that changes undetectable with our current methodology, such as denaturation or proteolysis, might occur because of sample handling conditions. The stability we observed gives laboratory personnel at the collection site sufficient time to aliquot samples before freezing and storage at -80 °C.


Clinical Pharmacology & Therapeutics | 2013

Purine Pathway Implicated in Mechanism of Resistance to Aspirin Therapy: Pharmacometabolomics-Informed Pharmacogenomics

Laura M. Yerges-Armstrong; Sandrine Ellero-Simatos; Anastasia Georgiades; Hongjie Zhu; Joshua P. Lewis; Richard B. Horenstein; Amber L. Beitelshees; Adrie Dane; Theo H. Reijmers; Thomas Hankemeier; Oliver Fiehn; Alan R. Shuldiner; Rima Kaddurah-Daouk

Although aspirin is a well‐established antiplatelet agent, the mechanisms of aspirin resistance remain poorly understood. Metabolomics allows for measurement of hundreds of small molecules in biological samples, enabling detailed mapping of pathways involved in drug response. We defined the metabolic signature of aspirin exposure in subjects from the Heredity and Phenotype Intervention Heart Study. Many metabolites, including known aspirin catabolites, changed on exposure to aspirin, and pathway enrichment analysis identified purine metabolism as significantly affected by drug exposure. Furthermore, purines were associated with aspirin response, and poor responders had higher postaspirin adenosine and inosine levels than did good responders (n = 76; both P < 4 × 10−3). Using our established “pharmacometabolomics‐informed pharmacogenomics” approach, we identified genetic variants in adenosine kinase associated with aspirin response. Combining metabolomics and genomics allowed for more comprehensive interrogation of mechanisms of variation in aspirin response—an important step toward personalized treatment approaches for cardiovascular disease.


CPT Pharmacometrics Syst. Pharmacol. | 2014

Pharmacometabolomics reveals that serotonin is implicated in aspirin response variability.

Sandrine Ellero-Simatos; Joshua P. Lewis; Anastasia Georgiades; Laura M. Yerges-Armstrong; Amber L. Beitelshees; Richard B. Horenstein; Adrie Dane; Amy C. Harms; Raymond Ramaker; R. Vreeken; Christina G. Perry; Hongjie Zhu; Cristina L. Sánchez; Cynthia M. Kuhn; Thomas L. Ortel; Alan R. Shuldiner; Thomas Hankemeier; Rima Kaddurah-Daouk

While aspirin is generally effective for prevention of cardiovascular disease, considerable variation in drug response exists, resulting in some individuals displaying high on‐treatment platelet reactivity. We used pharmacometabolomics to define pathways implicated in variation of response to treatment. We profiled serum samples from healthy subjects pre‐ and postaspirin (14 days, 81 mg/day) using mass spectrometry. We established a strong signature of aspirin exposure independent of response (15/34 metabolites changed). In our discovery (N = 80) and replication (N = 125) cohorts, higher serotonin levels pre‐ and postaspirin correlated with high, postaspirin, collagen‐induced platelet aggregation. In a third cohort, platelets from subjects with the highest levels of serotonin preaspirin retained higher reactivity after incubation with aspirin than platelets from subjects with the lowest serotonin levels preaspirin (72 ± 8 vs. 61 ± 11%, P = 0.02, N = 20). Finally, ex vivo, serotonin strongly increased platelet reactivity after platelet incubation with aspirin (+20%, P = 4.9 × 10−4, N = 12). These results suggest that serotonin is implicated in aspirin response variability.


PLOS ONE | 2014

Metabolomics Profiling for Identification of Novel Potential Markers in Early Prediction of Preeclampsia

Sylwia Kuc; Maria P.H. Koster; Jeroen L. A. Pennings; Thomas Hankemeier; Ruud Berger; Amy C. Harms; Adrie Dane; Peter C. J. I. Schielen; G.H.A. Visser; Rob J. Vreeken

Objective The first aim was to investigate specific signature patterns of metabolites that are significantly altered in first-trimester serum of women who subsequently developed preeclampsia (PE) compared to healthy pregnancies. The second aim of this study was to examine the predictive performance of the selected metabolites for both early onset [EO-PE] and late onset PE [LO-PE]. Methods This was a case-control study of maternal serum samples collected between 8+0 and 13+6 weeks of gestation from 167 women who subsequently developed EO-PE n = 68; LO-PE n = 99 and 500 controls with uncomplicated pregnancies. Metabolomics profiling analysis was performed using two methods. One has been optimized to target eicosanoids/oxylipins, which are known inflammation markers and the other targets compounds containing a primary or secondary biogenic amine group. Logistic regression analyses were performed to predict the development of PE using metabolites alone and in combination with first trimester mean arterial pressure (MAP) measurements. Results Two metabolites were significantly different between EO-PE and controls (taurine and asparagine) and one in case of LO-PE (glycylglycine). Taurine appeared the most discriminative biomarker and in combination with MAP predicted EO-PE with a detection rate (DR) of 55%, at a false-positive rate (FPR) of 10%. Conclusion Our findings suggest a potential role of taurine in both PE pathophysiology and first trimester screening for EO-PE.


Metabolomics | 2013

The influence of citrate, EDTA, and heparin anticoagulants to human plasma LC–MS lipidomic profiling

Vanessa Gonzalez-Covarrubias; Adrie Dane; Thomas Hankemeier; Rob J. Vreeken

Lipid profiling of human plasma by liquid chromatography-electrospray ionization coupled to mass spectrometry (LC–ESI-MS) is being used to identify biomarkers of health, disease, and treatment efficacy. However, there is no consensus on the choice of anticoagulant to perform and compare lipidomic measurements. This study assessed the effect of the anticoagulants citrate, EDTA, and heparin, on eight synthetic and 80 plasma lipids, and compared lipidomic data among anticoagulants. Lipid extraction was affected distinctively by the anticoagulant of choice likely due to the different physico-chemical properties among anticoagulants. Peak areas of seventy endogenous lipids showed significant differences between citrate–heparin and EDTA–heparin comparisons similar to those observed for synthetic lipids. Only ten endogenous lipid species showed comparable peak areas among the three anticoagulants. Correction by a structurally related internal standard only partly eliminated differences among anticoagulants (ANOVA, P value <0.001). However, comparisons among anticoagulants were possible for most endogenous lipids after correction of peak areas by the sum of areas of its lipid class. Our observations indicate that the choice of anticoagulant distinctively impact the peak response of most lipid species by LC–ESI-MS. Lipidomic data from plasma obtained with different anticoagulants should address differences in matrix effects and extraction procedures since ion strength, plasma pH, and different physicochemical properties among anticoagulants influence lipid extraction and LC–ESI-MS analysis.


Journal of Lipid Research | 2013

Plasma oxylipin profiling identifies polyunsaturated vicinal diols as responsive to arachidonic acid and docosahexaenoic acid intake in growing piglets

Maaike J. Bruins; Adrie Dane; Katrin Strassburg; Rob J. Vreeken; John W. Newman; Norman Salem; Cynthia Tyburczy; J. Thomas Brenna

The dose-responsiveness of plasma oxylipins to incremental dietary intake of arachidonic acid (20:4n-6; ARA) and docosahexaenoic acid (22:6n-3; DHA) was determined in piglets. Piglets randomly received one of six formulas (n = 8 per group) from days 3 to 27 postnatally. Diets contained incremental ARA or incremental DHA levels as follows (% fatty acid, ARA/DHA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3–D3) 0.69/1.0; (A4) 1.1/1.0; (D1) 0.66/0.33; and (D2) 0.67/0.62, resulting in incremental intake (g/kg BW/day) of ARA: 0.07 ± 0.01, 0.43 ± 0.03, 0.55 ± 0.03, and 0.82 ± 0.05 at constant DHA intake (0.82 ± 0.05), or incremental intake of DHA: 0.27 ± 0.02, 0.49 ± 0.03, and 0.81 ± 0.05 at constant ARA intake (0.54 ± 0.04). Plasma oxylipin concentrations and free plasma PUFA levels were determined at day 28 using LC-MS/MS. Incremental dietary ARA intake dose-dependently increased plasma ARA levels. In parallel, ARA intake dose-dependently increased ARA-derived diols 5,6- and 14,15-dihydroxyeicosatrienoic acid (DiHETrE) and linoleic acid-derived 12,13-dihydroxyoctadecenoic acid (DiHOME), downstream metabolites of cytochrome P450 expoxygenase (CYP). The ARA epoxide products from CYP are important in vascular homeostatic maintenance. Incremental DHA intake increased plasma DHA and most markedly raised the eicosapentaenoic acid (EPA) metabolite 17,18-dihydroxyeicosatetraenoic acid (DiHETE) and the DHA metabolite 19,20-dihydroxydocosapentaenoic acid (DiHDPE). In conclusion, increasing ARA and DHA intake dose-dependently influenced endogenous n-6 and n-3 oxylipin plasma concentrations in growing piglets, although the biological relevance of these findings remains to be determined.

Collaboration


Dive into the Adrie Dane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theo M. Luider

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge