Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Hankemeier is active.

Publication


Featured researches published by Thomas Hankemeier.


Metabolomics | 2007

Proposed minimum reporting standards for chemical analysis

Lloyd W. Sumner; Alexander Amberg; Dave Barrett; Michael H. Beale; Richard D. Beger; Clare A. Daykin; Teresa W.-M. Fan; Oliver Fiehn; Royston Goodacre; Julian L. Griffin; Thomas Hankemeier; Nigel Hardy; James M. Harnly; Richard M. Higashi; Joachim Kopka; Andrew N. Lane; John C. Lindon; Philip J. Marriott; Andrew W. Nicholls; Michael D. Reily; John J. Thaden; Mark R. Viant

There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://[email protected]. Further, community input related to this document can also be provided via this electronic forum.


Metabolomics | 2009

Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research

Augustin Scalbert; Lorraine Brennan; Oliver Fiehn; Thomas Hankemeier; Bruce S. Kristal; Ben van Ommen; Estelle Pujos-Guillot; Elwin Verheij; David S. Wishart; Suzan Wopereis

Mass spectrometry (MS) techniques, because of their sensitivity and selectivity, have become methods of choice to characterize the human metabolome and MS-based metabolomics is increasingly used to characterize the complex metabolic effects of nutrients or foods. However progress is still hampered by many unsolved problems and most notably the lack of well established and standardized methods or procedures, and the difficulties still met in the identification of the metabolites influenced by a given nutritional intervention. The purpose of this paper is to review the main obstacles limiting progress and to make recommendations to overcome them. Propositions are made to improve the mode of collection and preparation of biological samples, the coverage and quality of mass spectrometry analyses, the extraction and exploitation of the raw data, the identification of the metabolites and the biological interpretation of the results.


Metabolomics | 2011

Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives

Maud M. Koek; Renger H. Jellema; Jan van der Greef; Albert Tas; Thomas Hankemeier

Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues (the metabolome). By analyzing differences between metabolomes using biostatistics (multivariate data analysis; pattern recognition), metabolites relevant to a specific phenotypic characteristic can be identified. However, the reliability of the analytical data is a prerequisite for correct biological interpretation in metabolomics analysis. In this review the challenges in quantitative metabolomics analysis with regards to analytical as well as data preprocessing steps are discussed. Recommendations are given on how to optimize and validate comprehensive silylation-based methods from sample extraction and derivatization up to data preprocessing and how to perform quality control during metabolomics studies. The current state of method validation and data preprocessing methods used in published literature are discussed and a perspective on the future research necessary to obtain accurate quantitative data from comprehensive GC-MS data is provided.


Journal of Lipid Research | 2012

Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients

Michelle Janssens; Jeroen van Smeden; Gert S. Gooris; Wim Bras; Guiseppe Portale; Peter J. Caspers; Rob J. Vreeken; Thomas Hankemeier; Sanja Kezic; Ron Wolterbeek; Adriana P.M. Lavrijsen; Joke A. Bouwstra

A hallmark of atopic eczema (AE) is skin barrier dysfunction. Lipids in the stratum corneum (SC), primarily ceramides, fatty acids, and cholesterol, are crucial for the barrier function, but their role in relation to AE is indistinct. Filaggrin is an epithelial barrier protein with a central role in the pathogenesis of AE. Nevertheless, the precise causes of AE-associated barrier dysfunction are largely unknown. In this study, a comprehensive analysis of ceramide composition and lipid organization in nonlesional SC of AE patients and control subjects was performed by means of mass spectrometry, infrared spectroscopy, and X-ray diffraction. In addition, the skin barrier and clinical state of the disease were examined. The level of ceramides with an extreme short chain length is drastically increased in SC of AE patients, which leads to an aberrant lipid organization and a decreased skin barrier function. Changes in SC lipid properties correlate with disease severity but are independent of filaggrin mutations. We demonstrate for the first time that changes in ceramide chain length and lipid organization are directly correlated with the skin barrier defects in nonlesional skin of AE patients. We envisage that these insights will provide a new therapeutic entry in therapy and prevention of AE.


Current Opinion in Biotechnology | 2015

Microfluidic 3D cell culture: from tools to tissue models

Vincent van Duinen; Sebastiaan J. Trietsch; Jos Joore; Paul Vulto; Thomas Hankemeier

The transition from 2D to 3D cell culture techniques is an important step in a trend towards better biomimetic tissue models. Microfluidics allows spatial control over fluids in micrometer-sized channels has become a valuable tool to further increase the physiological relevance of 3D cell culture by enabling spatially controlled co-cultures, perfusion flow and spatial control over of signaling gradients. This paper reviews most important developments in microfluidic 3D culture since 2012. Most efforts were exerted in the field of vasculature, both as a tissue on its own and as part of cancer models. We observe that the focus is shifting from tool building to implementation of specific tissue models. The next big challenge for the field is the full validation of these models and subsequently the implementation of these models in drug development pipelines of the pharmaceutical industry and ultimately in personalized medicine applications.


Journal of Chromatography B | 2009

Analytical strategies in lipidomics and applications in disease biomarker discovery

Chunxiu Hu; Rob van der Heijden; Mei Wang; Jan van der Greef; Thomas Hankemeier; Guowang Xu

Lipidomics is a lipid-targeted metabolomics approach aiming at comprehensive analysis of lipids in biological systems. Recently, lipid profiling, or so-called lipidomics research, has captured increased attention due to the well-recognized roles of lipids in numerous human diseases to which lipid-associated disorders contribute, such as diabetes, obesity, atherosclerosis and Alzheimers disease. Investigating lipid biochemistry using a lipidomics approach will not only provide insights into the specific roles of lipid molecular species in health and disease, but will also assist in identifying potential biomarkers for establishing preventive or therapeutic approaches for human health. Recent technological advancements in mass spectrometry and rapid improvements in chromatographic techniques have led to the rapid expansion of the lipidomics research field. In this review, emphasis is given to the recent advances in lipidomics technologies and their applications in disease biomarker discovery.


Pharmacogenomics | 2006

Metabolomics-based systems biology and personalized medicine: Moving towards n = 1 clinical trials?

Jan van der Greef; Thomas Hankemeier; Robert N McBurney

Personalized medicine - defined as customized medical care for each patients unique condition - in the broader context of personalized health, will make significant strides forward when a systems approach is implemented to achieve the ultimate in disease phenotyping and to create novel therapeutics that address system-wide molecular perturbations caused by disease processes. Combination drug therapies with individualized optimization are likely to become a major focus. Metabolomics incorporates the most advanced approaches to molecular phenotype system readout and provides the ideal theranostic technology platform for the discovery of biomarker patterns associated with healthy and diseased states, for use in personalized health monitoring programs and for the design of individualized interventions.


Journal of Proteome Research | 2010

Comprehensive LC−MSE Lipidomic Analysis using a Shotgun Approach and Its Application to Biomarker Detection and Identification in Osteoarthritis Patients

Jose Castro-Perez; Jurre J. Kamphorst; Jeroen DeGroot; Floris P. J. G. Lafeber; Jeff Goshawk; Kate Yu; John P. Shockcor; Rob J. Vreeken; Thomas Hankemeier

A fast and robust method for lipid profiling utilizing liquid chromatography coupled with mass spectrometry has been demonstrated and validated for the analysis of human plasma. This method allowed quantification and identification of lipids in human plasma using parallel alternating low energy and high energy collision spectral acquisition modes. A total of 275 [corrected] lipids were identified and quantified (as relative concentrations) in both positive and negative ion electrospray ionization mode. The method was validated with five nonendogenous lipids, and the linearity (r(2) better than 0.994) and the intraday and interday repeatability (relative standard deviation, 4-6% and 5-8%, respectively) were satisfactory. The developed lipid profiling method was successfully applied for the analysis of plasma from osteoarthritis (OA) patients. The multivariate statistical analysis by partial least-squares-discrimination analysis suggested an altered lipid metabolism associated with osteoarthritis and the release of arachidonic acid from phospholipids.


Journal of Lipid Research | 2011

LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery

Jeroen van Smeden; Louise Hoppel; Rob van der Heijden; Thomas Hankemeier; Rob J. Vreeken; Joke A. Bouwstra

Ceramides (CERs) in the upper layer of the skin, the stratum corneum (SC), play a key role in the skin barrier function. In human SC, the literature currently reports 11 CER subclasses that have been identified. In this paper, a novel quick and robust LC/MS method is presented that allows the separation and analysis of all known human SC CER subclasses using only limited sample preparation. Besides all 11 known and identified subclasses, a 3D multi-mass chromatogram shows the presence of other lipid subclasses. Using LC/MS/MS with an ion trap (IT) system, a Fourier transform-ion cyclotron resonance system, and a triple quadrupole system, we were able to identify one of these lipid subclasses as a new CER subclass: the ester-linked ω-hydroxy fatty acid with a dihydrosphingosine base (CER [EOdS]). Besides the identification of a new CER subclass, this paper also describes the applicability and robustness of the developed LC/MS method by analyzing three (biological) SC samples: SC from human dermatomed skin, human SC obtained by tape stripping, and SC from full-thickness skin explants. All three biological samples showed all known CER subclasses and slight differences were observed in CER profile.


Journal of Proteome Research | 2008

RPLC-ion-trap-FTMS method for lipid profiling of plasma : method validation and application to p53 mutant mouse model

Chunxiu Hu; J. van Dommelen; R. van der Heijden; Gerwin Spijksma; Theo H. Reijmers; Mei Wang; Elizabeth A. Slee; Xin Lu; Guowang Xu; J. van der Greef; Thomas Hankemeier

A reversed-phase liquid chromatography-linear ion trap-Fourier transform ion cyclotron resonance-mass spectrometric method was developed for the profiling of lipids in human and mouse plasma. With the use of a fused-core C 8 column and a binary gradient, more than 160 lipids belonging to eight different classes were detected in a single LC-MS run. The method was fully validated and the analytical characteristics such as linearity ( R (2), 0.994-1.000), limit of detection (0.08-1.28 microg/mL plasma), repeatability (RSD, 2.7-7.9%) and intermediate precision (RSD, 2.7-15.6%) were satisfactory. The method was successfully applied to p53 mutant mice plasma for studying some phenotypic effects of p53 expression.

Collaboration


Dive into the Thomas Hankemeier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge