Adrien Allain
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adrien Allain.
Nature Materials | 2015
Adrien Allain; Jiahao Kang; Kaustav Banerjee; Andras Kis
The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical contacts that connect these materials with external circuitry. Here, we present a comprehensive treatment of the physics of such interfaces at the contact region and discuss recent progress towards realizing optimal contacts for two-dimensional materials. We also discuss the requirements that must be fulfilled to realize efficient spin injection in transition metal dichalcogenides.
ACS Nano | 2014
Dmitry Ovchinnikov; Adrien Allain; Ying-Sheng Huang; Dumitru Dumcenco; Andras Kis
We report on the fabrication of field-effect transistors based on single layers and bilayers of the semiconductor WS2 and the investigation of their electronic transport properties. We find that the doping level strongly depends on the device environment and that long in situ annealing drastically improves the contact transparency, allowing four-terminal measurements to be performed and the pristine properties of the material to be recovered. Our devices show n-type behavior with a high room-temperature on/off current ratio of ∼10(6). They show clear metallic behavior at high charge carrier densities and mobilities as high as ∼140 cm(2)/(V s) at low temperatures (above 300 cm(2)/(V s) in the case of bilayers). In the insulating regime, the devices exhibit variable-range hopping, with a localization length of about 2 nm that starts to increase as the Fermi level enters the conduction band. The promising electronic properties of WS2, comparable to those of single-layer MoS2 and WSe2, together with its strong spin-orbit coupling, make it interesting for future applications in electronic, optical, and valleytronic devices.
Nature Nanotechnology | 2015
Ajit M. Srivastava; Meinrad Sidler; Adrien Allain; Dominik Lembke; Andras Kis; Atac Imamoglu
Semiconductor quantum dots have emerged as promising candidates for the implementation of quantum information processing, because they allow for a quantum interface between stationary spin qubits and propagating single photons. In the meantime, transition-metal dichalcogenide monolayers have moved to the forefront of solid-state research due to their unique band structure featuring a large bandgap with degenerate valleys and non-zero Berry curvature. Here, we report the observation of zero-dimensional anharmonic quantum emitters, which we refer to as quantum dots, in monolayer tungsten diselenide, with an energy that is 20-100 meV lower than that of two-dimensional excitons. Photon antibunching in second-order photon correlations unequivocally demonstrates the zero-dimensional anharmonic nature of these quantum emitters. The strong anisotropic magnetic response of the spatially localized emission peaks strongly indicates that radiative recombination stems from localized excitons that inherit their electronic properties from the host transition-metal dichalcogenide. The large ∼1 meV zero-field splitting shows that the quantum dots have singlet ground states and an anisotropic confinement that is most probably induced by impurities or defects. The possibility of achieving electrical control in van der Waals heterostructures and to exploit the spin-valley degree of freedom renders transition-metal-dichalcogenide quantum dots interesting for quantum information processing.
Nature Physics | 2015
Ajit M. Srivastava; Meinrad Sidler; Adrien Allain; Dominik Lembke; Andras Kis; Atac Imamoglu
Charge carriers in transition metal dichalcogenides have an extra degree of freedom known as valley pseudospin, which is associated with the shape of the energy bands. Experiments show that this pseudospin can be manipulated using magnetic fields.
ACS Nano | 2014
Adrien Allain; Andras Kis
Single-layer transition metal dichalcogenide WSe2 has recently attracted a lot of attention because it is a 2D semiconductor with a direct band gap. Due to low doping levels, it is intrinsic and shows ambipolar transport. This opens up the possibility to realize devices with the Fermi level located in the valence band, where the spin/valley coupling is strong and leads to new and interesting physics. As a consequence of its intrinsically low doping, large Schottky barriers form between WSe2 and metal contacts, which impede the injection of charges at low temperatures. Here, we report on the study of single-layer WSe2 transistors with a polymer electrolyte gate (PEO:LiClO4). Polymer electrolytes allow the charge carrier densities to be modulated to very high values, allowing the observation of both the electron- and the hole-doped regimes. Moreover, our ohmic contacts formed at low temperatures allow us to study the temperature dependence of electron and hole mobilities. At high electron densities, a re-entrant insulating regime is also observed, a feature which is absent at high hole densities.
Nano Letters | 2015
Sajedeh Manzeli; Adrien Allain; Amirhossein Ghadimi; Andras Kis
Continuous tuning of material properties is highly desirable for a wide range of applications, with strain engineering being an interesting way of achieving it. The tuning range, however, is limited in conventional bulk materials that can suffer from plasticity and low fracture limit due to the presence of defects and dislocations. Atomically thin membranes such as MoS2 on the other hand exhibit high Youngs modulus and fracture strength, which makes them viable candidates for modifying their properties via strain. The bandgap of MoS2 is highly strain-tunable, which results in the modulation of its electrical conductivity and manifests itself as the piezoresistive effect, whereas a piezoelectric effect was also observed in odd-layered MoS2 with broken inversion symmetry. This coupling between electrical and mechanical properties makes MoS2 a very promising material for nanoelectromechanical systems (NEMS). Here, we incorporate monolayer, bilayer, and trilayer MoS2 in a nanoelectromechanical membrane configuration. We detect strain-induced band gap tuning via electrical conductivity measurements and demonstrate the emergence of the piezoresistive effect in MoS2. Finite element method (FEM) simulations are used to quantify the band gap change and to obtain a comprehensive picture of the spatially varying bandgap profile on the membrane. The piezoresistive gauge factor is calculated to be -148 ± 19, -224 ± 19, and -43.5 ± 11 for monolayer, bilayer, and trilayer MoS2, respectively, which is comparable to state-of-the-art silicon strain sensors and 2 orders of magnitude higher than in strain sensors based on suspended graphene. Controllable modulation of resistivity in 2D nanomaterials using strain-induced bandgap tuning offers a novel approach for implementing an important class of NEMS transducers, flexible and wearable electronics, tunable photovoltaics, and photodetection.
Nature Materials | 2012
Adrien Allain; Zheng Han; Vincent Bouchiat
Graphene is a sturdy and chemically inert material exhibiting an exposed two-dimensional electron gas of high mobility. These combined properties enable the design of graphene composites, based either on covalent or non-covalent coupling of adsorbates, or on stacked and multilayered heterostructures. These systems have shown tunable electronic properties such as bandgap engineering, reversible metal-insulating transition or supramolecular spintronics. Tunable superconductivity is expected as well, but experimental realization is lacking. Here, we show experiments based on metal-graphene hybrid composites, enabling the tunable proximity coupling of an array of superconducting nanoparticles of tin onto a macroscopic graphene sheet. This material allows full electrical control of the superconductivity down to a strongly insulating state at low temperature. The observed gate control of superconductivity results from the combination of a proximity-induced superconductivity generated by the metallic nanoparticle array with the two-dimensional and tunable metallicity of graphene. The resulting hybrid material behaves, as a whole, like a granular superconductor showing universal transition threshold and localization of Cooper pairs in the insulating phase. This experiment sheds light on the emergence of superconductivity in inhomogeneous superconductors, and more generally, it demonstrates the potential of graphene as a versatile building block for the realization of superconducting materials.
Advanced Functional Materials | 2014
Zheng Han; Amina Kimouche; Dipankar Kalita; Adrien Allain; Hadi Arjmandi-Tash; Antoine Reserbat-Plantey; Laëtitia Marty; Sébastien Pairis; Valérie Reita; Nedjma Bendiab; Johann Coraux; Vincent Bouchiat
By limiting the carbon segregation at the copper surface defects, a pulsed chemical vapor deposition method for single layer graphene growth is shown to inhibit the formation of few-layer regions, leading to a fully single-layered graphene homogeneous at the centimeter scale. Graphene field-effect devices obtained after transfer of pulsed grown graphene on oxidized silicon exhibit mobilities above 5000 cm^2.V^-1.s^-1.
Nature Communications | 2016
Dmitry Ovchinnikov; Fernando Gargiulo; Adrien Allain; Diego Pasquier; Dumitru Dumcenco; Ching-Hwa Ho; Oleg V. Yazyev; Andras Kis
Atomically thin rhenium disulphide (ReS2) is a member of the transition metal dichalcogenide family of materials. This two-dimensional semiconductor is characterized by weak interlayer coupling and a distorted 1T structure, which leads to anisotropy in electrical and optical properties. Here we report on the electrical transport study of mono- and multilayer ReS2 with polymer electrolyte gating. We find that the conductivity of monolayer ReS2 is completely suppressed at high carrier densities, an unusual feature unique to monolayers, making ReS2 the first example of such a material. Using dual-gated devices, we can distinguish the gate-induced doping from the electrostatic disorder induced by the polymer electrolyte itself. Theoretical calculations and a transport model indicate that the observed conductivity suppression can be explained by a combination of a narrow conduction band and Anderson localization due to electrolyte-induced disorder.
Nano Letters | 2016
Oriol Lopez Sanchez; Dmitry Ovchinnikov; Shikhar Misra; Adrien Allain; Andras Kis
The band structure of transition metal dichalcogenides (TMDCs) with valence band edges at different locations in the momentum space could be harnessed to build devices that operate relying on the valley degree of freedom. To realize such valleytronic devices, it is necessary to control and manipulate the charge density in these valleys, resulting in valley polarization. While this has been demonstrated using optical excitation, generation of valley polarization in electronic devices without optical excitation remains difficult. Here, we demonstrate spin injection from a ferromagnetic electrode into a heterojunction based on monolayers of WSe2 and MoS2 and lateral transport of spin-polarized holes within the WSe2 layer. The resulting valley polarization leads to circularly polarized light emission that can be tuned using an external magnetic field. This demonstration of spin injection and magnetoelectronic control over valley polarization provides a new opportunity for realizing combined spin and valleytronic devices based on spin-valley locking in semiconducting TMDCs.