Dmitry Ovchinnikov
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dmitry Ovchinnikov.
ACS Nano | 2015
Dumitru Dumcenco; Dmitry Ovchinnikov; Kolyo Marinov; Predrag Lazić; Marco Gibertini; Nicola Marzari; Oriol Lopez Sanchez; Yen-Cheng Kung; Daria Krasnozhon; Ming-Wei Chen; Simone Bertolazzi; Philippe Gillet; Anna Fontcuberta i Morral; Aleksandra Radenovic; Andras Kis
Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm.
ACS Nano | 2014
Dmitry Ovchinnikov; Adrien Allain; Ying-Sheng Huang; Dumitru Dumcenco; Andras Kis
We report on the fabrication of field-effect transistors based on single layers and bilayers of the semiconductor WS2 and the investigation of their electronic transport properties. We find that the doping level strongly depends on the device environment and that long in situ annealing drastically improves the contact transparency, allowing four-terminal measurements to be performed and the pristine properties of the material to be recovered. Our devices show n-type behavior with a high room-temperature on/off current ratio of ∼10(6). They show clear metallic behavior at high charge carrier densities and mobilities as high as ∼140 cm(2)/(V s) at low temperatures (above 300 cm(2)/(V s) in the case of bilayers). In the insulating regime, the devices exhibit variable-range hopping, with a localization length of about 2 nm that starts to increase as the Fermi level enters the conduction band. The promising electronic properties of WS2, comparable to those of single-layer MoS2 and WSe2, together with its strong spin-orbit coupling, make it interesting for future applications in electronic, optical, and valleytronic devices.
Nature | 2016
Jiandong Feng; Michael Graf; Ke Liu; Dmitry Ovchinnikov; Dumitru Dumcenco; Mohammad Heiranian; Vishal V. R. Nandigana; N. R. Aluru; Andras Kis; Aleksandra Radenovic
Making use of the osmotic pressure difference between fresh water and seawater is an attractive, renewable and clean way to generate power and is known as ‘blue energy’. Another electrokinetic phenomenon, called the streaming potential, occurs when an electrolyte is driven through narrow pores either by a pressure gradient or by an osmotic potential resulting from a salt concentration gradient. For this task, membranes made of two-dimensional materials are expected to be the most efficient, because water transport through a membrane scales inversely with membrane thickness. Here we demonstrate the use of single-layer molybdenum disulfide (MoS2) nanopores as osmotic nanopower generators. We observe a large, osmotically induced current produced from a salt gradient with an estimated power density of up to 106 watts per square metre—a current that can be attributed mainly to the atomically thin membrane of MoS2. Low power requirements for nanoelectronic and optoelectric devices can be provided by a neighbouring nanogenerator that harvests energy from the local environment—for example, a piezoelectric zinc oxide nanowire array or single-layer MoS2 (ref. 12). We use our MoS2 nanopore generator to power a MoS2 transistor, thus demonstrating a self-powered nanosystem.
Nature Communications | 2016
Dmitry Ovchinnikov; Fernando Gargiulo; Adrien Allain; Diego Pasquier; Dumitru Dumcenco; Ching-Hwa Ho; Oleg V. Yazyev; Andras Kis
Atomically thin rhenium disulphide (ReS2) is a member of the transition metal dichalcogenide family of materials. This two-dimensional semiconductor is characterized by weak interlayer coupling and a distorted 1T structure, which leads to anisotropy in electrical and optical properties. Here we report on the electrical transport study of mono- and multilayer ReS2 with polymer electrolyte gating. We find that the conductivity of monolayer ReS2 is completely suppressed at high carrier densities, an unusual feature unique to monolayers, making ReS2 the first example of such a material. Using dual-gated devices, we can distinguish the gate-induced doping from the electrostatic disorder induced by the polymer electrolyte itself. Theoretical calculations and a transport model indicate that the observed conductivity suppression can be explained by a combination of a narrow conduction band and Anderson localization due to electrolyte-induced disorder.
2D Materials | 2015
Dumitru Dumcenco; Dmitry Ovchinnikov; Oriol Lopez Sanchez; Philippe Gillet; Duncan T. L. Alexander; Sorin Lazar; Aleksandra Radenovic; Andras Kis
We report on the growth of molybdenum disulphide (MoS2) using H2S as a gas-phase sulfur precursor that allows controlling the domain growth direction of domains in both vertical (perpendicular to the substrate plane) and horizontal (within the substrate plane), depending on the H2S:H2 ratio in the reaction gas mixture and temperature at which they are introduced during growth. Optical and atomic force microscopy measurements on horizontal MoS2 demonstrate the formation of monolayer triangular-shape domains that merge into a continuous film. Scanning transmission electron microscopy of monolayer MoS2 shows a regular atomic structure with a hexagonal symmetry. Raman and photoluminescence spectra confirm the monolayer thickness of the material. Field-effect transistors fabricated on MoS2 domains that are transferred onto Si/SiO2 substrates show a mobility similar to previously reported exfoliated and chemical vapor deposition-grown materials.
Nano Letters | 2016
Oriol Lopez Sanchez; Dmitry Ovchinnikov; Shikhar Misra; Adrien Allain; Andras Kis
The band structure of transition metal dichalcogenides (TMDCs) with valence band edges at different locations in the momentum space could be harnessed to build devices that operate relying on the valley degree of freedom. To realize such valleytronic devices, it is necessary to control and manipulate the charge density in these valleys, resulting in valley polarization. While this has been demonstrated using optical excitation, generation of valley polarization in electronic devices without optical excitation remains difficult. Here, we demonstrate spin injection from a ferromagnetic electrode into a heterojunction based on monolayers of WSe2 and MoS2 and lateral transport of spin-polarized holes within the WSe2 layer. The resulting valley polarization leads to circularly polarized light emission that can be tuned using an external magnetic field. This demonstration of spin injection and magnetoelectronic control over valley polarization provides a new opportunity for realizing combined spin and valleytronic devices based on spin-valley locking in semiconducting TMDCs.
ACS Nano | 2017
Ming-Wei Chen; Dmitry Ovchinnikov; Sorin Lazar; Michele Pizzochero; Michael Brian Whitwick; A. Surrente; M. Baranowski; Oriol Lopez Sanchez; Philippe Gillet; P. Plochocka; Oleg V. Yazyev; Andras Kis
Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe2 on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates, allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe2. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film.
Nature Communications | 2018
Alberto Ciarrocchi; Ahmet Avsar; Dmitry Ovchinnikov; Andras Kis
The possibility of tailoring physical properties by changing the number of layers in van der Waals crystals is one of the driving forces behind the emergence of two-dimensional materials. One example is bulk MoS2, which changes from an indirect gap semiconductor to a direct bandgap semiconductor in the monolayer form. Here, we show a much bigger tuning range with a complete switching from a metal to a semiconductor in atomically thin PtSe2 as its thickness is reduced. Crystals with a thickness of ~13 nm show metallic behavior with a contact resistance as low as 70 Ω·µm. As they are thinned down to 2.5 nm and below, we observe semiconducting behavior. In such thin crystals, we demonstrate ambipolar transport with a bandgap smaller than 2.2 eV and an on/off ratio of ~105. Our results demonstrate that PtSe2 possesses an unusual behavior among 2D materials, enabling novel applications in nano and optoelectronics.The electronic band structure of van der Waals crystals is strongly sensitive to the number of layers. Here, the authors observe a thickness-dependent metal-to-semiconductor transition in layered PtSe2 by means of electrical transport measurements.
Nano Letters | 2017
HoKwon Kim; Dmitry Ovchinnikov; Davide Deiana; Dmitrii Unuchek; Andras Kis
Toward the large-area deposition of MoS2 layers, we employ metal-organic precursors of Mo and S for a facile and reproducible van der Waals epitaxy on c-plane sapphire. Exposing c-sapphire substrates to alkali metal halide salts such as KI or NaCl together with the Mo precursor prior to the start of the growth process results in increasing the lateral dimensions of single crystalline domains by more than 2 orders of magnitude. The MoS2 grown this way exhibits high crystallinity and optoelectronic quality comparable to single-crystal MoS2 produced by conventional chemical vapor deposition methods. The presence of alkali metal halides suppresses the nucleation and enhances enlargement of domains while resulting in chemically pure MoS2 after transfer. Field-effect measurements in polymer electrolyte-gated devices result in promising electron mobility values close to 100 cm2 V-1 s-1 at cryogenic temperatures.
npj 2D Materials and Applications | 2018
Ming-Wei Chen; HoKwon Kim; Dmitry Ovchinnikov; Agnieszka Kuc; Thomas Heine; O. Renault; Andras Kis
Atomically thin GaSe has been predicted to have a non-parabolic, Mexican hat-like valence band structure due to the shift of the valence band maximum (VBM) near the Γ point which is expected to give rise to novel, unique properties such as tunable magnetism, high effective mass suppressing direct tunneling in scaled transistors, and an improved thermoelectric figure of merit. However, the synthesis of atomically thin GaSe remains challenging. Here, we report on the growth of atomically thin GaSe by molecular beam epitaxy (MBE) and demonstrate the high quality of the resulting van der Waals epitaxial films. The full valence band structure of nominal bilayer GaSe is revealed by photoemission electron momentum microscopy (k-PEEM), confirming the presence of a distorted valence band near the Γ point. Our results open the way to demonstrating interesting new physical phenomena based on MBE-grown GaSe films and atomically thin monochalcogenides in general.Molecular beam epitaxy: two-dimensional GaSe with non-parabolic electronic dispersionMolecular beam epitaxy enables growth of high-quality, atomically thin GaSe on a GaAs substrate. A team led by Andras Kis at EPFL successfully demonstrated the synthesis of large-grain GaSe van der Waals epitaxial films using a two-step growth approach. The quality and spatial uniformity of the as-grown films were probed by various means of characterization, including scanning transmission electron microscopy, in-situ reflection high energy electron diffraction, and photoemission electron momentum microscopy. The results indicate a uniform distribution of Ga and Se in the GaSe film; at the atomically thin limit, the electronic band structure was found to exhibit inverted band dispersion at the Γ point, leading to a Mexican Hat-like valence band dispersion. These finding may pave the way to potential applications of GaSe in large-area electronics and spintronics.