Adrienne M. Luoma
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adrienne M. Luoma.
Immunity | 2013
Adrienne M. Luoma; Caitlin D. Castro; Toufic Mayassi; Leslie A. Bembinster; Li Bai; Damien Picard; Brian E. Anderson; Louise Scharf; Jennifer E. Kung; Leah V. Sibener; Paul B. Savage; Bana Jabri; Albert Bendelac; Erin J. Adams
The nature of the antigens recognized by γδ T cells and their potential recognition of major histocompatibility complex (MHC)-like molecules has remained unclear. Members of the CD1 family of lipid-presenting molecules are suggested ligands for Vδ1 TCR-expressing γδ T cells, the major γδ lymphocyte population in epithelial tissues. We crystallized a Vδ1 TCR in complex with CD1d and the self-lipid sulfatide, revealing the unusual recognition of CD1d by germline Vδ1 residues spanning all complementarity-determining region (CDR) loops, as well as sulfatide recognition separately encoded by nongermline CDR3δ residues. Binding and functional analysis showed that CD1d presenting self-lipids, including sulfatide, was widely recognized by gut Vδ1+ γδ T cells. These findings provide structural demonstration of MHC-like recognition of a self-lipid by γδ T cells and reveal the prevalence of lipid recognition by innate-like T cell populations.
Annual Review of Immunology | 2013
Erin J. Adams; Adrienne M. Luoma
The MHC fold is found in proteins that have a range of functions in the maintenance of an organisms health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and β2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a β-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.
European Journal of Immunology | 2012
Li Bai; Damien Picard; Brian E. Anderson; Vinod Chaudhary; Adrienne M. Luoma; Bana Jabri; Erin J. Adams; Paul B. Savage; Albert Bendelac
αβ T‐cell lines specific for sulfatide, an abundant myelin glycosphingolipid presented by various CD1 molecules, have been previously derived from PBMCs of patients with demyelinating diseases such as multiple sclerosis (MS) but also from healthy subjects. Using an unbiased tetramer‐based MACS enrichment method to enrich for rare antigen‐specific cells, we confirmed the presence of CD1d‐sulfatide‐specific T cells in all healthy individuals examined. Surprisingly, the great majority of fresh sulfatide‐specific T cells belonged to the γδ lineage. Furthermore, these cells used the Vδ1 TCR variable segment, which is uncommon in the blood but predominates in tissues such as the gut and specifically accumulates in MS lesions. Recombinant Vδ1 TCRs from different individuals were shown to bind recombinant CD1d‐sulfatide complexes in a sulfatide‐specific manner. These results provide the first direct demonstration of MHC‐like‐restricted, antigen‐specific recognition by γδ TCRs. Together with previous reports, they support the notion that human Vδ1 T cells are enriched in CD1‐specific T cells and suggest that the Vδ1 T‐cell population that accumulates in MS lesions might be enriched in CD1‐sulfatide‐specific cells.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Mark H. G. Verheijen; Nutabi Camargo; Karim Nadra; Anne-Sophie de Preux Charles; Jean-Jacques Médard; Adrienne M. Luoma; Michelle Crowther; Hideyo Inouye; Hitoshi Shimano; Su Chen; Jos F. Brouwers; J. Bernd Helms; M. Laura Feltri; Lawrence Wrabetz; Daniel A. Kirschner; Roman Chrast; August B. Smit
Myelination requires a massive increase in glial cell membrane synthesis. Here, we demonstrate that the acute phase of myelin lipid synthesis is regulated by sterol regulatory element-binding protein (SREBP) cleavage activation protein (SCAP), an activator of SREBPs. Deletion of SCAP in Schwann cells led to a loss of SREBP-mediated gene expression involving cholesterol and fatty acid synthesis. Schwann cell SCAP mutant mice show congenital hypomyelination and abnormal gait. Interestingly, aging SCAP mutant mice showed partial regain of function; they exhibited improved gait and produced small amounts of myelin indicating a slow SCAP-independent uptake of external lipids. Accordingly, extracellular lipoproteins partially rescued myelination by SCAP mutant Schwann cells. However, SCAP mutant myelin never reached normal thickness and had biophysical abnormalities concordant with abnormal lipid composition. These data demonstrate that SCAP-mediated regulation of glial lipogenesis is key to the proper synthesis of myelin membrane, and provide insight into abnormal Schwann cell function under conditions affecting lipid metabolism.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Jacinto López-Sagaseta; Charles L. Dulberger; James E. Crooks; Chelsea D. Parks; Adrienne M. Luoma; Amanda McFedries; Ildiko Van Rhijn; Alan Saghatelian; Erin J. Adams
Significance Mucosal-associated invariant T (MAIT) cells are a highly conserved lineage of αβ T cells found in most mammals. These cells express a T-cell receptor of low diversity that recognizes vitamin metabolites presented by the MHC-related protein, MR1. Despite the evolutionary divergence of MR1 from other MHC proteins, we have found that MAIT T-cell receptors recognize MR1 using similar molecular strategies as that of the highly diverse, conventional αβ T cells, which recognize classical MHC molecules presenting peptide fragments. Our results also shed light onto how MR1-presented antigens can modulate the MAIT–T-cell receptor affinity and MAIT cell stimulation. Mucosal-associated invariant T (MAIT) cells are an evolutionarily conserved αβ T-cell lineage that express a semi-invariant T-cell receptor (TCR) restricted to the MHC related-1 (MR1) protein. MAIT cells are dependent upon MR1 expression and exposure to microbes for their development and stimulation, yet these cells can exhibit microbial-independent stimulation when responding to MR1 from different species. We have used this microbial-independent, cross-species reactivity of MAIT cells to define the molecular basis of MAIT-TCR/MR1 engagement and present here a 2.85 Å complex structure of a human MAIT-TCR bound to bovine MR1. The MR1 binding groove is similar in backbone structure to classical peptide-presenting MHC class I molecules (MHCp), yet is partially occluded by large aromatic residues that form cavities suitable for small ligand presentation. The docking of the MAIT-TCR on MR1 is perpendicular to the MR1 surface and straddles the MR1 α1 and α2 helices, similar to classical αβ TCR engagement of MHCp. However, the MAIT-TCR contacts are dominated by the α-chain, focused on the MR1 α2 helix. TCR β-chain contacts are mostly through the variable CDR3β loop that is positioned proximal to the CDR3α loop directly over the MR1 open groove. The elucidation of the MAIT TCR/MR1 complex structure explains how the semi-invariant MAIT-TCR engages the nonpolymorphic MR1 protein, and sheds light onto ligand discrimination by this cell type. Importantly, this structure also provides a critical link in our understanding of the evolution of αβ T-cell recognition of MHC and MHC-like ligands.
Cellular Immunology | 2015
Erin J. Adams; Siyi Gu; Adrienne M. Luoma
The γδ T cell lineage in humans remains much of an enigma due to the low number of defined antigens, the non-canonical ways in which these cells respond to their environment and difficulty in tracking this population in vivo. In this review, we survey a comparative evolutionary analysis of the primate V, D and J gene segments and contrast these findings with recent progress in defining antigen recognition by different populations of γδ T cells in humans. Signatures of both purifying and diversifying selection at the Vδ and Vγ gene loci are placed into context of Vδ1+ γδ T cell recognition of CD1d presenting different lipids, and Vγ 9Vδ2 T cell modulation by pyrophosphate-based phosphoantigens through the butyrophilins BTN3A. From this comparison, it is clear that co-evolution between γδ TCRs and these ligands is likely occurring, but the diversity inherent in these recombined receptors is an important feature in ligand surveillance.
Journal of Clinical Investigation | 2014
Tiago Ferreira da Silva; Jessica Eira; André T. Lopes; Ana R. Malheiro; Vera Sousa; Adrienne M. Luoma; Robin L. Avila; Wilhelm W. Just; Daniel A. Kirschner; Mónica Mendes Sousa; Pedro Brites
Rhizomelic chondrodysplasia punctata (RCDP) is a developmental disorder characterized by hypotonia, cataracts, abnormal ossification, impaired motor development, and intellectual disability. The underlying etiology of RCDP is a deficiency in the biosynthesis of ether phospholipids, of which plasmalogens are the most abundant form in nervous tissue and myelin; however, the role of plasmalogens in the peripheral nervous system is poorly defined. Here, we used mouse models of RCDP and analyzed the consequence of plasmalogen deficiency in peripheral nerves. We determined that plasmalogens are crucial for Schwann cell development and differentiation and that plasmalogen defects impaired radial sorting, myelination, and myelin structure. Plasmalogen insufficiency resulted in defective protein kinase B (AKT) phosphorylation and subsequent signaling, causing overt activation of glycogen synthase kinase 3β (GSK3β) in nerves of mutant mice. Treatment with GSK3β inhibitors, lithium, or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) restored Schwann cell defects, effectively bypassing plasmalogen deficiency. Our results demonstrate the requirement of plasmalogens for the correct and timely differentiation of Schwann cells and for the process of myelination. In addition, these studies identify a mechanism by which the lack of a membrane phospholipid causes neuropathology, implicating plasmalogens as regulators of membrane and cell signaling.
Trends in Immunology | 2014
Adrienne M. Luoma; Caitlin D. Castro; Erin J. Adams
γδ T cells are a prominent epithelial-resident lymphocyte population, possessing multi-functional capacities in the repair of host tissue, pathogen clearance, and tumor surveillance. Although three decades have now passed since their discovery, the nature of γδ T cell receptor (TCR)-mediated ligand recognition remains poorly defined. Recent studies have provided structural insight into this recognition, demonstrating that γδ T cells survey both CD1 and the presented lipid, and in some cases are exquisitely lipid specific. We review these findings here, examining the molecular basis for and the functional relevance of this interaction. We discuss potential implications on the notion that non-classical major histocompatibility complex (MHC) molecules may function as important restricting elements of γδ TCR specificity, and on our understanding of γδ T cell activation and function.
Immunological Reviews | 2015
Caitlin D. Castro; Adrienne M. Luoma; Erin J. Adams
The structure and amino acid diversity of the T‐cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T‐cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T‐cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen‐recognition capabilities in divergent lineages.
Free Radical Biology and Medicine | 2015
Adrienne M. Luoma; Fonghsu Kuo; Ozgur Cakici; Michelle Crowther; Andrew R. Denninger; Robin L. Avila; Pedro Brites; Daniel A. Kirschner
Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders. Myelin is a lipid-rich multilamellar sheath that facilitates rapid nerve conduction in vertebrates. Given the high energetic demands and low antioxidant capacity of the cells that elaborate the sheaths, myelin is considered intrinsically vulnerable to oxidative damage, raising the question whether additional mechanisms prevent structural damage. We characterized the structural and biochemical basis of ROS-mediated myelin damage in murine tissues from both central nervous system (CNS) and peripheral nervous system (PNS). To determine whether ROS can cause structural damage to the internodal myelin, whole sciatic and optic nerves were incubated ex vivo with a hydroxyl radical-generating system consisting of copper (Cu), hydrogen peroxide (HP), and ortho-phenanthroline (OP). Quantitative assessment of unfixed tissue by X-ray diffraction revealed irreversible compaction of myelin membrane stacking in both sciatic and optic nerves. Incubation in the presence of the hydroxyl radical scavenger sodium formate prevented this damage, implicating hydroxyl radical species. Myelin membranes are particularly enriched in plasmalogens, a class of ether-linked phospholipids proposed to have antioxidant properties. Myelin in sciatic nerve from plasmalogen-deficient (Pex7 knockout) mice was significantly more vulnerable to Cu/OP/HP-mediated ROS-induced compaction than myelin from WT mice. Our results directly support the role of plasmalogens as endogenous antioxidants providing a defense that protects ROS-vulnerable myelin.