Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin L. Avila is active.

Publication


Featured researches published by Robin L. Avila.


The Journal of Neuroscience | 2008

Constitutively Active Akt Induces Enhanced Myelination in the CNS

Ana I. Flores; S. Priyadarshini Narayanan; Emily N. Morse; H. Elizabeth Shick; Xinghua Yin; Grahame J. Kidd; Robin L. Avila; Daniel A. Kirschner; Wendy B. Macklin

The serine/threonine kinase Akt regulates multiple cellular functions. The current studies identify a new role for Akt in CNS myelination. In earlier studies on cultured oligodendrocytes, we showed that neuregulin signals through phosphatidylinositol-3′-OH kinase and Akt to enhance survival of oligodendrocytes. However, when transgenic animals were generated that overexpressed constitutively active Akt in oligodendrocytes and their progenitor cells, no enhanced survival of oligodendrocytes or progenitors was found. No alteration in the proliferation or death of progenitors was noted. In contrast, the major impact of Akt overexpression in oligodendrocytes was enhanced myelination. Most interestingly, oligodendrocytes in these mice continued actively myelinating throughout life. Thus, expression of constitutively active Akt in oligodendrocytes and their progenitor cells generated no more oligodendrocytes, but dramatically more myelin. The increased myelination continued as these mice aged, resulting in enlarged optic nerves and white matter areas. In older animals with enlarged white matter areas, the density of oligodendrocytes was reduced, but because of the increased area, the total number of oligodendrocytes remained comparable with wild-type controls. Interestingly, in these animals, overexpression of Akt in Schwann cells did not impact myelination. Thus, in vivo, constitutively active Akt enhances CNS myelination but not PNS myelination and has no impact developmentally on oligodendrocyte number. Understanding the unique aspects of Akt signal transduction in oligodendrocytes that lead to myelination rather than uncontrolled proliferation of oligodendrocyte progenitor cells may have important implications for understanding remyelination in the adult nervous system.


The Journal of Neuroscience | 2006

Different Intracellular Pathomechanisms Produce Diverse Myelin Protein Zero Neuropathies in Transgenic Mice

Lawrence Wrabetz; Maurizio D'Antonio; Maria Pennuto; Dati G; Elisa Tinelli; Fratta P; Stefano C. Previtali; Imperiale D; Jürgen Zielasek; Klaus V. Toyka; Robin L. Avila; Daniel A. Kirschner; Albee Messing; Maria Laura Feltri; Angelo Quattrini

Missense mutations in 22 genes account for one-quarter of Charcot–Marie–Tooth (CMT) hereditary neuropathies. Myelin Protein Zero (MPZ, P0) mutations produce phenotypes ranging from adult demyelinating (CMT1B) to early onset [Déjérine-Sottas syndrome (DSS) or congenital hypomyelination] to predominantly axonal neuropathy, suggesting gain of function mechanisms. To test this directly, we produced mice in which either the MpzS63C (DSS) or MpzS63del (CMT1B) transgene was inserted randomly, so that the endogenous Mpz alleles could compensate for any loss of mutant P0 function. We show that either mutant allele produces demyelinating neuropathy that mimics the corresponding human disease. However, P0S63C creates a packing defect in the myelin sheath, whereas P0S63del does not arrive to the myelin sheath and is instead retained in the endoplasmic reticulum, where it elicits an unfolded protein response (UPR). This is the first evidence for UPR in association with neuropathy and provides a model to determine whether and how mutant proteins can provoke demyelination from outside of myelin.


Journal of Neuropathology and Experimental Neurology | 2005

Structure and Stability of Internodal Myelin in Mouse Models of Hereditary Neuropathy

Robin L. Avila; Hideyo Inouye; Rena C. Baek; Xinghua Yin; Bruce D. Trapp; M. Laura Feltri; Lawrence Wrabetz; Daniel A. Kirschner

Peripheral neuropathies often result in abnormalities in the structure of internodal myelin, including changes in period and membrane packing, as observed by electron microscopy (EM). Mutations in the gene that encodes the major adhesive structural protein of internodal myelin in the peripheral nervous system of humans and mice-P0 glycoprotein-correlate with these defects. The mechanisms by which P0 mutations interfere with myelin packing and stability are not well understood and cannot be provided by EM studies that give static and qualitative information on fixed material. To gain insights into the pathogenesis of mutant P0, we used x-ray diffraction, which can detect more subtle and dynamic changes in native myelin, to investigate myelin structure in sciatic nerves from murine models of hereditary neuropathies. We used mice with disruption of one or both copies of the P0 gene (models of Charcot-Marie-Tooth-like neuropathy [CMT1B] or Dejerine-Sottas-like neuropathy) and mice with a CMT1B resulting from a transgene encoding P0 with an amino terminal myc-tag. To directly test the structural role of P0, we also examined a mouse that expresses P0 instead of proteolipid protein in central nervous system myelin. To link our findings on unfixed nerves with EM results, we analyzed x-ray patterns from unembedded, aldehyde-fixed nerves and from plastic-embedded nerves. From the x-ray patterns recorded from whole nerves, we assessed the amount of myelin and its quality (i.e. relative thickness and regularity). Among sciatic nerves having different levels of P0, we found that unfixed nerves and, to a lesser extent, fixed but unembedded nerves gave diffraction patterns of sufficient quality to distinguish periods, sometimes differing by a few Å. Certain packing abnormalities were preserved qualitatively by aldehyde fixation, and the relative amount and structural integrity of myelin among nerves could be distinguished. Measurements from the same nerve over time showed that the amount of P0 affected myelins stability against swelling, thus directly supporting the hypothesis that packing defects underlie instability in “live” or intact myelin. Our findings demonstrate that diffraction can provide a quantitative basis for understanding, at a molecular level, the membrane packing defects that occur in internodal myelin in demyelinating peripheral neuropathies.


Journal of Clinical Investigation | 2014

Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination

Tiago Ferreira da Silva; Jessica Eira; André T. Lopes; Ana R. Malheiro; Vera Sousa; Adrienne M. Luoma; Robin L. Avila; Wilhelm W. Just; Daniel A. Kirschner; Mónica Mendes Sousa; Pedro Brites

Rhizomelic chondrodysplasia punctata (RCDP) is a developmental disorder characterized by hypotonia, cataracts, abnormal ossification, impaired motor development, and intellectual disability. The underlying etiology of RCDP is a deficiency in the biosynthesis of ether phospholipids, of which plasmalogens are the most abundant form in nervous tissue and myelin; however, the role of plasmalogens in the peripheral nervous system is poorly defined. Here, we used mouse models of RCDP and analyzed the consequence of plasmalogen deficiency in peripheral nerves. We determined that plasmalogens are crucial for Schwann cell development and differentiation and that plasmalogen defects impaired radial sorting, myelination, and myelin structure. Plasmalogen insufficiency resulted in defective protein kinase B (AKT) phosphorylation and subsequent signaling, causing overt activation of glycogen synthase kinase 3β (GSK3β) in nerves of mutant mice. Treatment with GSK3β inhibitors, lithium, or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) restored Schwann cell defects, effectively bypassing plasmalogen deficiency. Our results demonstrate the requirement of plasmalogens for the correct and timely differentiation of Schwann cells and for the process of myelination. In addition, these studies identify a mechanism by which the lack of a membrane phospholipid causes neuropathology, implicating plasmalogens as regulators of membrane and cell signaling.


The Journal of Neuroscience | 2010

Lack of Collagen XV Impairs Peripheral Nerve Maturation and, When Combined with Laminin-411 Deficiency, Leads to Basement Membrane Abnormalities and Sensorimotor Dysfunction

Karolina Rasi; Merja Hurskainen; Mika Kallio; Saara Stavén; Raija Sormunen; Anthony M. Heape; Robin L. Avila; Daniel A. Kirschner; Anu Muona; Uolevi Tolonen; Heikki Tanila; Pirkko Huhtala; Raija Soininen; Taina Pihlajaniemi

Although the Schwann cell basement membrane (BM) is required for normal Schwann cell terminal differentiation, the role of BM-associated collagens in peripheral nerve maturation is poorly understood. Collagen XV is a BM zone component strongly expressed in peripheral nerves, and we show that its absence in mice leads to loosely packed axons in C-fibers and polyaxonal myelination. The simultaneous lack of collagen XV and another peripheral nerve component affecting myelination, laminin α4, leads to severely impaired radial sorting and myelination, and the maturation of the nerve is permanently compromised, contrasting with the slow repair observed in Lama4−/− single knock-out mice. Moreover, the Col15a1−/−;Lama4−/− double knock-out (DKO) mice initially lack C-fibers and, even over 1 year of age have only a few, abnormal C-fibers. The Lama4−/− knock-out results in motor and tactile sensory impairment, which is exacerbated by a simultaneous Col15a1−/− knock-out, whereas sensitivity to heat-induced pain is increased in the DKO mice. Lack of collagen XV results in slower sensory nerve conduction, whereas the Lama4−/− and DKO mice exhibit increased sensory nerve action potentials and decreased compound muscle action potentials; x-ray diffraction revealed less mature myelin in the sciatic nerves of the latter than in controls. Ultrastructural analyses revealed changes in the Schwann cell BM in all three mutants, ranging from severe (DKO) to nearly normal (Col15a1−/−). Collagen XV thus contributes to peripheral nerve maturation and C-fiber formation, and its simultaneous deletion from neural BM zones with laminin α4 leads to a DKO phenotype distinct from those of both single knock-outs.


Journal of Structural Biology | 2009

Internodal myelination during development quantitated using X-ray diffraction.

Deepika Agrawal; Rachel Hawk; Robin L. Avila; Hideyo Inouye; Daniel A. Kirschner

Characterizing the formation, accretion, and stability of myelin during development, maturation, and senescence is important for better understanding critical periods in the function of the nervous system in normal growth and following environmental insult or genetic mutation. Although there are numerous studies on the ultrastructural, biochemical, and genetic aspects of myelin development and maturation, few have used X-ray diffraction (XRD), which can rapidly provide unique metrics about internodal myelin based on measurements from whole, unfixed tissue. Besides periodicity (the classic attribute of internodal myelin measured by XRD), other parameters include: relative amount of myelin, membrane dimensions, and packing disorder. To provide a baseline for future experiments on myelin structural integrity, we used XRD to characterize internodal myelin as a function of age (from 5 to 495 days) in the mouse, a species increasingly used for developing transgenic models of human neurological diseases. As expected, the relative amount of myelin increased with age in both PNS and CNS, with the most rapid accumulation occurring in the youngest age group. Changes in rate of myelin accretion yielded three distinct age brackets during which small but significant changes in structural parameters were detected: in PNS, myelin period increased, packing distortion decreased, width of extracellular apposition (EXT) decreased, and widths of cytoplasmic apposition (CYT) and lipid bilayer (LPG) increased; in CNS, myelin period decreased, packing distortion decreased, EXT and CYT decreased, and LPG increased. We propose that the data obtained here can serve as a basis for rapidly detecting abnormal pathologies during myelination.


Neurotoxicology | 2012

Myelin structure is unaltered in chemotherapy-induced peripheral neuropathy

Alessandra Gilardini; Robin L. Avila; Norberto Oggioni; Virginia Rodriguez-Menendez; Mario Bossi; Annalisa Canta; Guido Cavaletti; Daniel A. Kirschner

PURPOSE Alterations in mRNA for myelin proteins are reported in animal models of chemotherapy-induced peripheral neuropathies (CIPN); however, ultrastructural changes in aldehyde-fixed and plastic-embedded myelin are not evident by electron microscopy. Therefore, we used X-ray diffraction (XRD) to investigate more subtle changes in myelin sheath structure from unfixed nerves. EXPERIMENTAL DESIGN We used in vivo chronic animal models of CIPN in female Wistar rats, administering cisplatin (CDDP 2mg/kg, i.p. twice/week), paclitaxel (PT 10mg/kg, i.v. once/week) or bortezomib (0.20mg/kg, i.v. three times/week) over a total period of 4weeks. Animal weights were monitored, and tail nerve conduction velocity (NCV) was determined at the end of the treatments to assess the occurrence of peripheral neuropathy. Sciatic nerves were collected and the myelin structure was analyzed using electron microscopy (EM) and XRD. RESULTS All the rats treated with the chemotherapy agents developed peripheral neuropathy, as indicated by a decrease in NCV values; however, light and electron microscopy indicated no severe pathological alterations of the myelin morphology. XRD also did not demonstrate significant differences between sciatic nerves in treated vs. control rats with respect to myelin period, relative amount of myelin, membrane structure, and regularity of membrane packing. CONCLUSIONS These results indicate that experimental peripheral neuropathy caused by CDDP, PT, and bortezomib-which are among the most widely used chemotherapy agents-does not significantly affect the structure of internodal myelin in peripheral nerve.


Free Radical Biology and Medicine | 2015

Plasmalogen phospholipids protect internodal myelin from oxidative damage

Adrienne M. Luoma; Fonghsu Kuo; Ozgur Cakici; Michelle Crowther; Andrew R. Denninger; Robin L. Avila; Pedro Brites; Daniel A. Kirschner

Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders. Myelin is a lipid-rich multilamellar sheath that facilitates rapid nerve conduction in vertebrates. Given the high energetic demands and low antioxidant capacity of the cells that elaborate the sheaths, myelin is considered intrinsically vulnerable to oxidative damage, raising the question whether additional mechanisms prevent structural damage. We characterized the structural and biochemical basis of ROS-mediated myelin damage in murine tissues from both central nervous system (CNS) and peripheral nervous system (PNS). To determine whether ROS can cause structural damage to the internodal myelin, whole sciatic and optic nerves were incubated ex vivo with a hydroxyl radical-generating system consisting of copper (Cu), hydrogen peroxide (HP), and ortho-phenanthroline (OP). Quantitative assessment of unfixed tissue by X-ray diffraction revealed irreversible compaction of myelin membrane stacking in both sciatic and optic nerves. Incubation in the presence of the hydroxyl radical scavenger sodium formate prevented this damage, implicating hydroxyl radical species. Myelin membranes are particularly enriched in plasmalogens, a class of ether-linked phospholipids proposed to have antioxidant properties. Myelin in sciatic nerve from plasmalogen-deficient (Pex7 knockout) mice was significantly more vulnerable to Cu/OP/HP-mediated ROS-induced compaction than myelin from WT mice. Our results directly support the role of plasmalogens as endogenous antioxidants providing a defense that protects ROS-vulnerable myelin.


Journal of Neuroscience Research | 2009

Rapid assessment of internodal myelin integrity in central nervous system tissue.

Daniel A. Kirschner; Robin L. Avila; Rodolfo E. Gamez Sazo; Adrienne M. Luoma; Gaby U. Enzmann; Deepika Agrawal; Hideyo Inouye; Mary Bartlett Bunge; Jeffery D. Kocsis; Alan Peters; Scott R. Whittemore

Monitoring pathology/regeneration in experimental models of de‐/remyelination requires an accurate measure not only of functional changes but also of the amount of myelin. We tested whether X‐ray diffraction (XRD), which measures periodicity in unfixed myelin, can assess the structural integrity of myelin in fixed tissue. From laboratories involved in spinal cord injury research and in studying the aging primate brain, we solicited “blind” samples and used an electronic detector to record rapidly the diffraction patterns (30 min each pattern) from them. We assessed myelin integrity by measuring its periodicity and relative amount. Fixation of tissue itself introduced ±10% variation in periodicity and ±40% variation in relative amount of myelin. For samples having the most native‐like periods, the relative amounts of myelin detected allowed distinctions to be made between normal and demyelinating segments, between motor and sensory tracts within the spinal cord, and between aged and young primate CNS. Different periodicities also allowed distinctions to be made between samples from spinal cord and nerve roots and between well‐fixed and poorly fixed samples. Our findings suggest that, in addition to evaluating the effectiveness of different fixatives, XRD could also be used as a robust and rapid technique for quantitating the relative amount of myelin among spinal cords and other CNS tissue samples from experimental models of de‐ and remyelination.


Journal of Negative Results in Biomedicine | 2007

Peripheral Nervous System Manifestations in a Sandhoff Disease Mouse Model: Nerve Conduction, Myelin Structure, Lipid Analysis

Melanie McNally; Rena C. Baek; Robin L. Avila; Thomas N. Seyfried; Gary R. Strichartz; Daniel A. Kirschner

BackgroundSandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (Hexb gene) of β-hexosaminidase A (αβ) and B (ββ). The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (Hexb-/-), we examined the electrophysiology of dissected sciatic nerves, structure of central and peripheral myelin, and lipid composition of the peripheral nervous system.ResultsWe detected no significant difference in signal impulse conduction velocity or any consistent change in the frequency-dependent conduction slowing and failure between freshly dissected sciatic nerves from the Hexb+/- and Hexb-/- mice. The low-angle x-ray diffraction patterns from freshly dissected sciatic and optic nerves of Hexb+/- and Hexb-/- mice showed normal myelin periods; however, Hexb-/- mice displayed a ~10% decrease in the relative amount of compact optic nerve myelin, which is consistent with the previously established reduction in myelin-enriched lipids (cerebrosides and sulfatides) in brains of Hexb-/- mice. Finally, analysis of lipid composition revealed that GM2 content was present in the sciatic nerve of the Hexb-/- mice (undetectable in Hexb+/-).ConclusionOur findings demonstrate the absence of significant functional, structural, or compositional abnormalities in the peripheral nervous system of the murine model for Sandhoff disease, but do show the potential value of integrating multiple techniques to evaluate myelin structure and function in nervous system disorders.

Collaboration


Dive into the Robin L. Avila's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge