Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Afsaneh Gaillard is active.

Publication


Featured researches published by Afsaneh Gaillard.


Nature | 2008

An intrinsic mechanism of corticogenesis from embryonic stem cells

Nicolas Gaspard; Tristan Bouschet; Raphael Hourez; Jordane Dimidschstein; Gilles Naeije; Jelle van den Ameele; Ira Espuny-Camacho; Adèle Herpoel; Lara Passante; Serge N. Schiffmann; Afsaneh Gaillard; Pierre Vanderhaeghen

The cerebral cortex develops through the coordinated generation of dozens of neuronal subtypes, but the mechanisms involved remain unclear. Here we show that mouse embryonic stem cells, cultured without any morphogen but in the presence of a sonic hedgehog inhibitor, recapitulate in vitro the major milestones of cortical development, leading to the sequential generation of a diverse repertoire of neurons that display most salient features of genuine cortical pyramidal neurons. When grafted into the cerebral cortex, these neurons develop patterns of axonal projections corresponding to a wide range of cortical layers, but also to highly specific cortical areas, in particular visual and limbic areas, thereby demonstrating that the identity of a cortical area can be specified without any influence from the brain. The discovery of intrinsic corticogenesis sheds new light on the mechanisms of neuronal specification, and opens new avenues for the modelling and treatment of brain diseases.


Neuron | 2013

Pyramidal Neurons Derived from Human Pluripotent Stem Cells Integrate Efficiently into Mouse Brain Circuits In Vivo

Ira Espuny-Camacho; Kimmo A. Michelsen; David Gall; Daniele Linaro; Anja Hasche; Jérôme Bonnefont; Camilia Bali; David Orduz; Angéline Bilheu; Adèle Herpoel; Nelle Lambert; Nicolas Gaspard; Sophie Péron; Serge N. Schiffmann; Michele Giugliano; Afsaneh Gaillard; Pierre Vanderhaeghen

The study of human cortical development has major implications for brain evolution and diseases but has remained elusive due to paucity of experimental models. Here we found that human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), cultured without added morphogens, recapitulate corticogenesis leading to the sequential generation of functional pyramidal neurons of all six layer identities. After transplantation into mouse neonatal brain, human ESC-derived cortical neurons integrated robustly and established specific axonal projections and dendritic patterns corresponding to native cortical neurons. The differentiation and connectivity of the transplanted human cortical neurons complexified progressively over several months in vivo, culminating in the establishment of functional synapses with the host circuitry. Our data demonstrate that human cortical neurons generated in vitro from ESC/iPSC can develop complex hodological properties characteristic of the cerebral cortex in vivo, thereby offering unprecedented opportunities for the modeling of human cortex diseases and brain repair.


Nature Neuroscience | 2007

Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons

Afsaneh Gaillard; Laetitia Prestoz; Brigitte Dumartin; Anne Cantereau; Franck Morel; Michel Roger; Mohamed Jaber

Damage to the adult motor cortex leads to severe and frequently irreversible deficits in motor function. Transplantation of embryonic cortical neurons into the damaged adult motor cortex was previously shown to induce partial recovery, but reports on graft efferents have varied from no efferent projections to sparse innervation. Here, we grafted embryonic cortical tissue from transgenic mice overexpressing a green fluorescent protein into the damaged motor cortex of adult mice. Grafted neurons developed efferent projections to appropriate cortical and subcortical host targets, including the thalamus and spinal cord. These projections were not a result of cell fusion between the transplant and the host neurons. Host and transplanted neurons formed synaptic contacts and numerous graft efferents were myelinated. These findings demonstrate that there is substantial anatomical reestablishment of cortical circuitry following embryonic cortex grafting into the adult brain. They suggest that there is an unsuspected potential for neural cell transplantation to promote reconstruction after brain injury.


International Journal of Pharmaceutics | 2003

Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats

Christine Dufès; Jean-Christophe Olivier; Frederic Gaillard; Afsaneh Gaillard; William Couet; Jean-Marc Muller

The aim of this work was to study in rats the nasal route for the brain delivery of the vasoactive intestinal peptide (VIP) neuropeptide. After evaluating VIP stability in solutions obtained from nasal washes, the effect of formulation parameters (pH 4-9, 0-1% (w/v) lauroylcarnitine (LC), hypo- or isoosmolality) on the brain uptake of intranasally administered VIP (10(-8)M)/125I-VIP (300,000 cpm/ml) was studied, using an in situ perfusion technique. Brain radioactivity distribution was assessed by quantitative autoradiographic analysis. Results were compared to intravenously administered VIP. With a hypotonic formulation at pH 4 containing 0.1% LC and 1% bovine serum albumin, VIP stability was satisfactory and loss by adsorption was minimal. Using this formulation, around 0.11% of initial radioactivity was found in the brain after 30 min perfusion and was located in the olfactory bulbs, the midbrain and the cerebellum. HPLC analysis of brain and blood extracts demonstrated the presence of intact VIP in brain and its complete degradation in the blood compartment. By intravenous administration, no intact VIP was found either in brain or in blood. In conclusion, intact VIP could be delivered successfully to the brain using the intranasal route for administration.


Neurobiology of Disease | 2009

Neuropeptide Y stimulates proliferation, migration and differentiation of neural precursors from the subventricular zone in adult mice

Mickael Decressac; Laetitia Prestoz; Julien Veran; Anne Cantereau; Mohamed Jaber; Afsaneh Gaillard

The neuropeptide Y (NPY) is widely expressed in the central nervous system and has been shown to stimulate neurogenesis in the hippocampus and the olfactory epithelium. Here, we demonstrate that intracerebroventricular injection of NPY stimulates proliferation of neural precursors in the mice subventricular zone (SVZ), one the most neurogenic areas of the brain. Newly generated neuroblasts migrate through the rostral migratory stream to the olfactory bulb and also directly to the striatum, as evidenced by BrdU labelling and cell phenotyping. Using knock-out mice, specific NPY receptor agonists and antagonists, we report that this neuroproliferative effect is mediated by the Y1 receptor subtype that we found to be highly expressed in the SVZ both at the mRNA and protein levels. Our data suggest that stimulating endogenous SVZ neural stem cells by NPY may be of a potential interest in cell replacement based therapies of neurodegenerative diseases affecting the striatum such as Huntingtons disease.


Hippocampus | 2011

Exogenous neuropeptide Y promotes in vivo hippocampal neurogenesis

Mickael Decressac; Ben Wright; Belin David; Pam Tyers; Mohamed Jaber; Roger A. Barker; Afsaneh Gaillard

Adult neurogenesis mainly occurs in two brain regions, the subventricular zone and the dentate gyrus (DG) of the hippocampus. Neuropeptide Y (NPY) is widely expressed throughout the brain and is known to enhance in vitro hippocampal cell proliferation. Mice lacking either NPY or the Y1 receptor display lower levels of cell proliferation, thereby suggesting a role for NPY in basal in vivo neurogenesis. Here, we investigated whether exogenous NPY stimulates DG progenitors proliferation in vivo. We show that intracerebroventricular administration of NPY increases DG cell proliferation and promotes neuronal differentiation in C57BL/6 adult mice. In these mice, the proliferative effect of NPY is mediated by the Y1 and not the Y2 receptor, as a Y1 ([Leu31,Pro34]), but not a Y2 (NPY3–36), receptor agonist enhanced proliferation. In addition, no NPY‐induced DG cellular proliferation is observed following NPY injection when coadministered with a Y1 antagonist or in the Y1 receptor knockout mouse. These results are in line with data obtained in Y1−/− mice, demonstrating that NPY regulates in vivo hippocampal neurogenesis.


Neurobiology of Disease | 2009

Anatomical and functional reconstruction of the nigrostriatal pathway by intranigral transplants

Afsaneh Gaillard; Mickael Decressac; Isabelle Frappé; Pierre-Olivier Fernagut; Laetitia Prestoz; Stephan Besnard; Mohamed Jaber

The main transplantation strategy in Parkinsons disease has been to place dopaminergic grafts not in their ontogenic site, the substantia nigra, but in their target area, the striatum with contrasting results. Here we have used green fluorescent protein transgenic mouse embryos as donors of ventral mesencephalic cells for transplantation into the pre-lesioned substantia nigra of an adult wild-type host. This allows distinguishing the transplanted cells and their projections from those of the host. Grafted cells integrated within the host mesencephalon and expressed the dopaminergic markers tyrosine hydroxylase, vesicular monoamine transporter 2 and dopamine transporter. Most of the dopaminergic cells within the transplant expressed the substantia nigra marker Girk2 while a lesser proportion expressed the ventral tegmental area marker calbindin. Mesencephalic transplants developed projections through the medial forebrain bundle to the striatum, increased striatal dopamine levels and restored normal behavior. Interestingly, only mesencephalic transplants were able to restore the nigrostriatal projections as dopamine neurons originating from embryonic olfactory bulb transplants send projections only in the close vicinity of the transplantation site that did not reach the striatum. Our results show for the first time the ability of intranigral foetal dopaminergic neurons grafts to restore the damaged nigrostriatal pathway in adult mice. Together with our previous findings of efficient embryonic transplantation within the pre-lesioned adult motor cortex, these results demonstrate that the adult brain is permissive to specific and long distance axonal growth. They further open new avenues in cell transplantation therapies applied for the treatment of neurodegenerative disorders such as Parkinsons disease.


Frontiers in Cellular Neuroscience | 2012

Potentials of endogenous neural stem cells in cortical repair

Bhaskar Saha; Mohamed Jaber; Afsaneh Gaillard

In the last few decades great thrust has been put in the area of regenerative neurobiology research to combat brain injuries and neurodegenerative diseases. The recent discovery of neurogenic niches in the adult brain has led researchers to study how to mobilize these cells to orchestrate an endogenous repair mechanism. The brain can minimize injury-induced damage by means of an immediate glial response and by initiating repair mechanisms that involve the generation and mobilization of new neurons to the site of injury where they can integrate into the existing circuit. This review highlights the current status of research in this field. Here, we discuss the changes that take place in the neurogenic milieu following injury. We will focus, in particular, on the cellular and molecular controls that lead to increased proliferation in the Sub ventricular Zone (SVZ) as well as neurogenesis. We will also concentrate on how these cellular and molecular mechanisms influence the migration of new cells to the affected area and their differentiation into neuronal/glial lineage that initiate the repair mechanism. Next, we will discuss some of the different factors that limit/retard the repair process and highlight future lines of research that can help to overcome these limitations. A clear understanding of the underlying molecular mechanisms and physiological changes following brain damage and the subsequent endogenous repair should help us develop better strategies to repair damaged brains.


Trends in Neurosciences | 2011

Rewiring the brain with cell transplantation in Parkinson's disease

Afsaneh Gaillard; Mohamed Jaber

Cell replacement therapy has been proposed as a means to replace lost dopaminergic neurons in Parkinsons disease (PD). In most studies, the transplanted cells have been placed within the target site, the striatum, and not within the lesioned site, the substantia nigra, as the adult nigrostriatal pathway was thought to constitute a non-permissive environment for long distance axonal outgrowth of transplanted neuroblasts. Here, we discuss recent findings showing that intranigral transplanted dopaminergic neuroblasts can form axonal projections to the striatum, resulting in increased striatal dopamine levels and ameliorating behavioral deficits in animal models of PD. Such findings have raised new hopes and opened new avenues for cell replacement therapy in patients with PD.


Neurobiology of Aging | 2012

Neuroprotection by neuropeptide Y in cell and animal models of Parkinson's disease

Mickael Decressac; Stéphanie Pain; Pierre-Yves Chabeauti; Laura Frangeul; Nathalie Thiriet; Herbert Herzog; Jackie Vergote; Sylvie Chalon; Mohamed Jaber; Afsaneh Gaillard

This study was aimed to investigate the potential neuroprotective effect of neuropeptide Y (NPY) on the survival of dopaminergic cells in both in vitro and in animal models of Parkinsons disease (PD). NPY protected human SH-SY5Y dopaminergic neuroblastoma cells from 6-hydroxydopamine-induced toxicity. In rat and mice models of PD, striatal injection of NPY preserved the nigrostriatal dopamine pathway from degeneration as evidenced by quantification of (1) tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta, levels of (2) striatal tyrosine hydroxylase and dopamine transporter, (3) dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) as well as (4) rotational behavior. NPY had no neuroprotective effects in mice treated with Y(2) receptor antagonist or in transgenic mice deficient for Y(2) receptor suggesting that NPY effects are mediated through this receptor. Stimulation of Y(2) receptor by NPY triggered the activation of both the ERK1/2 and Akt pathways but did not modify levels of brain derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor. These results open new perspectives in neuroprotective therapies using NPY and suggest potential beneficial effects in PD.

Collaboration


Dive into the Afsaneh Gaillard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Vanderhaeghen

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederic Gaillard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ira Espuny-Camacho

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Nicolas Gaspard

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge