Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Afzal Godil is active.

Publication


Featured researches published by Afzal Godil.


Pattern Recognition | 2013

A comparison of methods for non-rigid 3D shape retrieval

Zhouhui Lian; Afzal Godil; Benjamin Bustos; Mohamed Daoudi; Jeroen Hermans; Shun Kawamura; Yukinori Kurita; Guillaume Lavoué; Hien Van Nguyen; Ryutarou Ohbuchi; Yuki Ohkita; Yuya Ohishi; Fatih Porikli; Martin Reuter; Ivan Sipiran; Dirk Smeets; Paul Suetens; Hedi Tabia; Dirk Vandermeulen

Non-rigid 3D shape retrieval has become an active and important research topic in content-based 3D object retrieval. The aim of this paper is to measure and compare the performance of state-of-the-art methods for non-rigid 3D shape retrieval. The paper develops a new benchmark consisting of 600 non-rigid 3D watertight meshes, which are equally classified into 30 categories, to carry out experiments for 11 different algorithms, whose retrieval accuracies are evaluated using six commonly utilized measures. Models and evaluation tools of the new benchmark are publicly available on our web site [1].


eurographics | 2011

SHREC'11 track: shape retrieval on non-rigid 3D watertight meshes

Zhouhui Lian; Afzal Godil; Benjamin Bustos; Mohamed Daoudi; Jeroen Hermans; Shun Kawamura; Yukinori Kurita; Guillaume Lavoué; Hien Van Nguyen; Ryutarou Ohbuchi; Yuki Ohkita; Yuya Ohishi; Fatih Porikli; Martin Reuter; Ivan Sipiran; Dirk Smeets; Paul Suetens; Hedi Tabia; Dirk Vandermeulen

Non-rigid 3D shape retrieval has become an important research topic in content-based 3D object retrieval. The aim of this track is to measure and compare the performance of non-rigid 3D shape retrieval methods implemented by different participants around the world. The track is based on a new non-rigid 3D shape benchmark, which contains 600 watertight triangle meshes that are equally classified into 30 categories. In this track, 25 runs have been submitted by 9 groups and their retrieval accuracies were evaluated using 6 commonly-utilized measures.


shape modeling international conference | 2010

Visual Similarity Based 3D Shape Retrieval Using Bag-of-Features

Zhouhui Lian; Afzal Godil; Xianfang Sun

This paper presents a novel 3D shape retrieval method, which uses Bag-of-Features and an efficient multi-view shape matching scheme. In our approach, a properly normalized object is first described by a set of depth-buffer views captured on the surrounding vertices of a given unit geodesic sphere. We then represent each view as a word histogram generated by the vector quantization of the view’s salient local features. The dissimilarity between two 3D models is measured by the minimum distance of their all (24) possible matching pairs. This paper also investigates several critical issues including the influence of the number of views, codebook, training data, and distance function. Experiments on four commonly-used benchmarks demonstrate that: 1) Our approach obtains superior performance in searching for rigid models. 2) The local feature and global feature based methods are somehow complementary. Moreover, a linear combination of them significantly outperforms the state-of-the-art in terms of retrieval accuracy.


The Visual Computer | 2012

Evaluation of 3D interest point detection techniques via human-generated ground truth

Helin Dutagaci; Chun Pan Cheung; Afzal Godil

In this paper, we present an evaluation strategy based on human-generated ground truth to measure the performance of 3D interest point detection techniques. We provide quantitative evaluation measures that relate automatically detected interest points to human-marked points, which were collected through a web-based application. We give visual demonstrations and a discussion on the results of the subjective experiments. We use a voting-based method to construct ground truth for 3D models and propose three evaluation measures, namely False Positive and False Negative Errors, and Weighted Miss Error to compare interest point detection algorithms.


Computer Vision and Image Understanding | 2014

A comparison of methods for sketch-based 3D shape retrieval

Bo Li; Yijuan Lu; Afzal Godil; Tobias Schreck; Benjamin Bustos; Alfredo Ferreira; Takahiko Furuya; Manuel J. Fonseca; Henry Johan; Takahiro Matsuda; Ryutarou Ohbuchi; Pedro B. Pascoal; Jose M. Saavedra

Sketch-based 3D shape retrieval has become an important research topic in content-based 3D object retrieval. To foster this research area, two Shape Retrieval Contest (SHREC) tracks on this topic have been organized by us in 2012 and 2013 based on a small-scale and large-scale benchmarks, respectively. Six and five (nine in total) distinct sketch-based 3D shape retrieval methods have competed each other in these two contests, respectively. To measure and compare the performance of the top participating and other existing promising sketch-based 3D shape retrieval methods and solicit the state-of-the-art approaches, we perform a more comprehensive comparison of fifteen best (four top participating algorithms and eleven additional state-of-the-art methods) retrieval methods by completing the evaluation of each method on both benchmarks. The benchmarks, results, and evaluation tools for the two tracks are publicly available on our websites [1,2].


eurographics | 2012

SHREC'12 track: generic 3D shape retrieval

Bo Li; Afzal Godil; Masaki Aono; X. Bai; Takahiko Furuya; L. Li; Roberto Javier López-Sastre; Henry Johan; Ryutarou Ohbuchi; Carolina Redondo-Cabrera; Atsushi Tatsuma; Tomohiro Yanagimachi; S. Zhang

Generic 3D shape retrieval is a fundamental research area in the field of content-based 3D model retrieval. The aim of this track is to measure and compare the performance of generic 3D shape retrieval methods implemented by different participants over the world. The track is based on a new generic 3D shape benchmark, which contains 1200 triangle meshes that are equally classified into 60 categories. In this track, 16 runs have been submitted by 5 groups and their retrieval accuracies were evaluated using 7 commonly used performance metrics.


international symposium on visual computing | 2008

A New Shape Benchmark for 3D Object Retrieval

Rui Fang; Afzal Godil; Xiaolan Li; Asim Imdad Wagan

Recently, content based 3D shape retrieval has been an active area of research. Benchmarking allows researchers to evaluate the quality of results of different 3D shape retrieval approaches. Here, we propose a new publicly available 3D shape benchmark to advance the state of art in 3D shape retrieval. We provide a review of previous and recent benchmarking efforts and then discuss some of the issues and problems involved in developing a benchmark. A detailed description of the new shape benchmark is provided including some of the salient features of this benchmark. In this benchmark, the 3D models are classified mainly according to visual shape similarity but in contrast to other benchmarks, the geometric structure of each model is modified and normalized, with each class in the benchmark sharing the equal number of models to reduce the possible bias in evaluation results. In the end we evaluate several representative algorithms for 3D shape searching on the new benchmark, and a comparison experiment between different shape benchmarks is also conducted to show the reliability of the new benchmark.


eurographics | 2013

SHREC'13 track: large scale sketch-based 3D shape retrieval

Bo Li; Yijuan Lu; Afzal Godil; Tobias Schreck; Masaki Aono; Henry Johan; Jose M. Saavedra; Shoki Tashiro

Sketch-based 3D shape retrieval has become an important research topic in content-based 3D object retrieval. The aim of this track is to measure and compare the performance of sketch-based 3D shape retrieval methods based on a large scale hand-drawn sketch query dataset which has 7200 sketches and a generic 3D model target dataset containing 1258 3D models. The sketches and models are divided into 80 distinct classes. In this track, 5 runs have been submitted by 3 groups and their retrieval accuracies were evaluated using 7 commonly used retrieval performance metrics. We hope that this benchmark, its corresponding evaluation code, and the comparative evaluation results will contribute to the progress of this research direction for the 3D model retrieval community.


arXiv: Computer Vision and Pattern Recognition | 2004

Face recognition using 3D facial shape and color map information: comparison and combination

Afzal Godil; Sanford P. Ressler; Patrick J. Grother

In this paper, we investigate the use of 3D surface geometry for face recognition and compare it to one based on color map information. The 3D surface and color map data are from the CAESAR anthropometric database. We find that the recognition performance is not very different between 3D surface and color map information using a principal component analysis algorithm. We also discuss the different techniques for the combination of the 3D surface and color map information for multi-modal recognition by using different fusion approaches and show that there is significant improvement in results. The effectiveness of various techniques is compared and evaluated on a dataset with 200 subjects in two different positions.


Proceedings of SPIE | 2011

Salient local 3D features for 3D shape retrieval

Afzal Godil; Asim Imdad Wagan

In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

Collaboration


Dive into the Afzal Godil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Li

Texas State University

View shared research outputs
Top Co-Authors

Avatar

Atsushi Tatsuma

Toyohashi University of Technology

View shared research outputs
Top Co-Authors

Avatar

Masaki Aono

Toyohashi University of Technology

View shared research outputs
Top Co-Authors

Avatar

Asim Imdad Wagan

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Helin Dutagaci

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Henry Johan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

C. Li

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge